Lower bounds on signed edge total domination numbers in graphs

被引:0
|
作者
H. Karami
S. M. Sheikholeslami
Abdollah Khodkar
机构
[1] Azarbaijan University of Tarbiat Moallem,Department of Mathematics
[2] University of West Georgia,Department of Mathematics
来源
关键词
signed edge domination; signed edge total dominating function; signed edge total domination number;
D O I
暂无
中图分类号
学科分类号
摘要
The open neighborhood NG(e) of an edge e in a graph G is the set consisting of all edges having a common end-vertex with e. Let f be a function on E(G), the edge set of G, into the set {−1, 1}. If \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sum\limits_{x \in N_G (e)} {f(x) \geqslant 1} $$\end{document} for each e ∈ E(G), then f is called a signed edge total dominating function of G. The minimum of the values \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sum\limits_{e \in E(G)} {f(e)} $$\end{document}, taken over all signed edge total dominating function f of G, is called the signed edge total domination number of G and is denoted by γst′(G). Obviously, γst′(G) is defined only for graphs G which have no connected components isomorphic to K2. In this paper we present some lower bounds for γst′(G). In particular, we prove that γst′(T) ⩾ 2 − m/3 for every tree T of size m ⩾ 2. We also classify all trees T with γst′(T).
引用
收藏
页码:595 / 603
页数:8
相关论文
共 50 条
  • [31] Bounds on Signed Edge Domination
    Lv, Jinfeng
    Gao, Mingjing
    Yang, Fenghong
    Di, Congna
    [J]. PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON INFORMATION AND MANAGEMENT SCIENCES, 2009, 8 : 863 - 865
  • [32] Lower bounds on the signed k-domination number of graphs
    Volkmann, Lutz
    [J]. ARS COMBINATORIA, 2017, 135 : 357 - 367
  • [33] An improved upper bound for signed edge domination numbers in graphs
    Karami, H.
    Khodkar, Abdollah
    Sheikholeslami, S. M.
    [J]. UTILITAS MATHEMATICA, 2009, 78 : 121 - 128
  • [34] Inverse Signed Edge Domination Numbers of Some Kinds of Graphs
    Huang, Zhongsheng
    [J]. 2010 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE AND ENGINEERING (MSE 2010), VOL 4, 2010, : 490 - 492
  • [35] Bounds on Laplacian eigenvalues related to total and signed domination of graphs
    Wei Shi
    Liying Kang
    Suichao Wu
    [J]. Czechoslovak Mathematical Journal, 2010, 60 : 315 - 325
  • [36] Upper bounds on the upper signed total domination number of graphs
    Shan, Erfang
    Cheng, T. C. E.
    [J]. DISCRETE APPLIED MATHEMATICS, 2009, 157 (05) : 1098 - 1103
  • [37] Bounds on Laplacian eigenvalues related to total and signed domination of graphs
    Shi, Wei
    Kang, Liying
    Wu, Suichao
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2010, 60 (02) : 315 - 325
  • [38] Bounds on the signed total Roman 2-domination in graphs
    Khoeilar, R.
    Shahbazi, L.
    Sheikholeslami, S. M.
    Shao, Zehui
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (01)
  • [39] SIGNED TOTAL {K}-DOMINATION AND {K}-DOMATIC NUMBERS OF GRAPHS
    Sheikholeslami, S. M.
    Volkmann, L.
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2012, 4 (01)
  • [40] SIGNED TOTAL K-DOMINATION NUMBERS OF DIRECTED GRAPHS
    Sheikholeslami, S. M.
    Volkmann, L.
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2010, 18 (02): : 241 - 251