Computing fuzzy process efficiency in parallel systems

被引:0
|
作者
Sebastián Lozano
机构
[1] University of Seville,Department of Industrial Management
[2] Escuela Superior de Ingenieros,undefined
[3] Camino de los Descubrimientos,undefined
来源
关键词
Network DEA; Fuzzy data; Parallel processes; Process efficiency;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with parallel process systems in which the input and output data are fuzzy. The α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upalpha $$\end{document}-level based approach is used to compute the fuzzy system efficiency and a simple procedure is proposed to estimate the fuzzy efficiency of the different processes. The main contribution of the paper is estimating the latter taking into account the variability of the process efficiencies compatible with a given value of the system efficiency. This variability comes from the existence of alternative optimal weights in the system efficiency multiplier network DEA models. The computation of the fuzzy system efficiency involves one Linear and one Non-linear Program for each α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upalpha $$\end{document}-cut while the computation of each process efficiency requires solving just a couple of related Linear Programs for each α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upalpha $$\end{document}-cut. The proposed approach is illustrated with a parallel systems dataset extracted from the literature.
引用
收藏
页码:73 / 89
页数:16
相关论文
共 50 条
  • [41] Efficiency measurement for parallel production systems
    Kao, Chiang
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2009, 196 (03) : 1107 - 1112
  • [42] Parallel Soft Computing Techniques in High-Performance Computing Systems
    Dorronsoro, Bernabe
    Nesmachnow, Sergio
    COMPUTER JOURNAL, 2016, 59 (06): : 775 - 776
  • [43] Swarm Fuzzy Systems: Knowledge Acquisition in Fuzzy Systems and Its Applications in Grid Computing
    Garcia-Galan, Sebastian
    Prado, Rocio P.
    Munoz Exposito, Jose Enrique
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2014, 26 (07) : 1791 - 1804
  • [44] Optimization of Machine Learning Process Using Parallel Computing
    Grzeszczyk, Michal K.
    ADVANCES IN SCIENCE AND TECHNOLOGY-RESEARCH JOURNAL, 2018, 12 (04): : 81 - 87
  • [45] Optimizing the Process of Medical Images Using a Parallel Computing
    Saito, Priscila T. M.
    Sabatine, Ricardo J.
    Nunes, Fatima L. S.
    Jaquie Castelo Branco, Kalinka R. L.
    CISCI 2007: 6TA CONFERENCIA IBEROAMERICANA EN SISTEMAS, CIBERNETICA E INFORMATICA, MEMORIAS, VOL I, 2007, : 165 - 170
  • [46] HETEROGENEOUS PARALLEL COMPUTING USING CUDA FOR CHEMICAL PROCESS
    Sosutha, S.
    Mohana, D.
    GRAPH ALGORITHMS, HIGH PERFORMANCE IMPLEMENTATIONS AND ITS APPLICATIONS (ICGHIA 2014), 2015, 47 : 237 - 246
  • [47] Fuzzy Systems-as-a-Service in Cloud Computing
    Parra-Royon, Manuel
    Benitez, Jose M.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2019, 12 (02) : 1162 - 1172
  • [48] Computing real solutions of fuzzy polynomial systems
    Aubry, Philippe
    Marrez, Jeremy
    Valibouze, Annick
    FUZZY SETS AND SYSTEMS, 2020, 399 : 55 - 76
  • [49] Computing fuzzy trajectories for nonlinear dynamic systems
    Maces, D. Andrei
    Stadtherr, Mark A.
    COMPUTERS & CHEMICAL ENGINEERING, 2013, 52 : 10 - 25
  • [50] Computing Behavioural Distance for Fuzzy Transition Systems
    Bu, Tian-Ming
    Wu, Hengyang
    Chen, Yixiang
    PROCEEDINGS 11TH 2017 INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF SOFTWARE ENGINEERING (TASE), 2017, : 32 - 38