Computing fuzzy process efficiency in parallel systems

被引:0
|
作者
Sebastián Lozano
机构
[1] University of Seville,Department of Industrial Management
[2] Escuela Superior de Ingenieros,undefined
[3] Camino de los Descubrimientos,undefined
来源
关键词
Network DEA; Fuzzy data; Parallel processes; Process efficiency;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with parallel process systems in which the input and output data are fuzzy. The α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upalpha $$\end{document}-level based approach is used to compute the fuzzy system efficiency and a simple procedure is proposed to estimate the fuzzy efficiency of the different processes. The main contribution of the paper is estimating the latter taking into account the variability of the process efficiencies compatible with a given value of the system efficiency. This variability comes from the existence of alternative optimal weights in the system efficiency multiplier network DEA models. The computation of the fuzzy system efficiency involves one Linear and one Non-linear Program for each α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upalpha $$\end{document}-cut while the computation of each process efficiency requires solving just a couple of related Linear Programs for each α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upalpha $$\end{document}-cut. The proposed approach is illustrated with a parallel systems dataset extracted from the literature.
引用
收藏
页码:73 / 89
页数:16
相关论文
共 50 条
  • [21] Evaluating parallel computing systems in bioinformaties
    Gough, Erik S.
    Kane, Michael D.
    THIRD INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: NEW GENERATIONS, PROCEEDINGS, 2006, : 233 - +
  • [22] Organization of Parallel Computing on Hybrid Computing Clusters Using Fuzzy Intellectual Analysis
    Fedulov, Ya. A.
    Fedulova, A. S.
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2024, 34 (03) : 639 - 644
  • [23] Computing the Risk Indicators in Fuzzy Systems
    Georgescu, Irina
    JOURNAL OF INFORMATION TECHNOLOGY RESEARCH, 2012, 5 (04) : 63 - 84
  • [24] Communicating sequential parallel computing in process modelling
    Pozna, E
    Csukas, B
    HUNGARIAN JOURNAL OF INDUSTRIAL CHEMISTRY, 1997, 25 (04): : 265 - 275
  • [25] Improving Efficiency in Parallel Computing Leveraging Local Synchronization
    Cicirelli, Franco
    Giordano, Andrea
    Mastroianni, Carlo
    NUMERICAL COMPUTATIONS: THEORY AND ALGORITHMS, PT I, 2020, 11973 : 232 - 242
  • [26] Resource Managing Method for Parallel Computing Systems Using Fuzzy Data Preprocessing for Input Tasks Parameters
    Voitsitskaya, Anastasia
    Fedulov, Alexader
    Fedulov, Yaroslav
    PROCEEDINGS OF THE THIRD INTERNATIONAL SCIENTIFIC CONFERENCE INTELLIGENT INFORMATION TECHNOLOGIES FOR INDUSTRY (IITI'18), VOL 1, 2019, 874 : 410 - 419
  • [27] EFFICIENCY BOUNDS FOR MULTIPROCESSOR COMPUTING SYSTEMS
    ASTAKHOV, AD
    AUTOMATION AND REMOTE CONTROL, 1975, 36 (06) : 997 - 1001
  • [28] Parallel Computing of Multi-resolution Combined Fuzzy Networks
    Liang, Yan
    THEORETICAL AND MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE, 2011, 164 : 345 - 353
  • [29] PARALLEL COMPUTING SYSTEMS WITH LOCALLY INTERACTING ELEMENTS
    MISHIN, AI
    AUTOMATION AND REMOTE CONTROL, 1982, 43 (10) : 1348 - 1354
  • [30] Messaging systems: Parallel computing the Internet and the grid
    Fox, G
    RECENT ADVANCES IN PARALLEL VIRTUAL MACHINE AND MESSAGE PASSING INTERFACE, 2003, 2840 : 1 - 9