Computing fuzzy process efficiency in parallel systems

被引:0
|
作者
Sebastián Lozano
机构
[1] University of Seville,Department of Industrial Management
[2] Escuela Superior de Ingenieros,undefined
[3] Camino de los Descubrimientos,undefined
来源
关键词
Network DEA; Fuzzy data; Parallel processes; Process efficiency;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with parallel process systems in which the input and output data are fuzzy. The α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upalpha $$\end{document}-level based approach is used to compute the fuzzy system efficiency and a simple procedure is proposed to estimate the fuzzy efficiency of the different processes. The main contribution of the paper is estimating the latter taking into account the variability of the process efficiencies compatible with a given value of the system efficiency. This variability comes from the existence of alternative optimal weights in the system efficiency multiplier network DEA models. The computation of the fuzzy system efficiency involves one Linear and one Non-linear Program for each α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upalpha $$\end{document}-cut while the computation of each process efficiency requires solving just a couple of related Linear Programs for each α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upalpha $$\end{document}-cut. The proposed approach is illustrated with a parallel systems dataset extracted from the literature.
引用
收藏
页码:73 / 89
页数:16
相关论文
共 50 条
  • [1] Computing fuzzy process efficiency in parallel systems
    Lozano, Sebastian
    FUZZY OPTIMIZATION AND DECISION MAKING, 2014, 13 (01) : 73 - 89
  • [2] PARALLEL COMPUTING IN FUZZY DECISION MAKING SYSTEMS
    Balli, Serkan
    Karasulu, Bahadir
    PAMUKKALE UNIVERSITY JOURNAL OF ENGINEERING SCIENCES-PAMUKKALE UNIVERSITESI MUHENDISLIK BILIMLERI DERGISI, 2013, 19 (02): : 61 - 67
  • [3] Efficiency of parallel production systems with fuzzy data
    Kao, Chiang
    Lin, Pei-Huang
    FUZZY SETS AND SYSTEMS, 2012, 198 : 83 - 98
  • [4] DESIGNING FOR PARALLEL FUZZY COMPUTING
    ASCIA, G
    CATANIA, V
    GIACALONE, B
    RUSSO, M
    VITA, L
    IEEE MICRO, 1995, 15 (06) : 62 - 62
  • [5] Improving Parallel Computing Efficiency
    Aleeva, Valentina N.
    2020 GLOBAL SMART INDUSTRY CONFERENCE (GLOSIC), 2020, : 113 - 120
  • [6] Editorial Message: Special Issue on Advances in Parallel and Distributed Computing for Fuzzy Systems
    Xiao, Guoqing
    Li, Kenli
    Li, Maozhen
    Wang, Lipo
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2019, 21 (06) : 1868 - 1869
  • [7] Editorial Message: Special Issue on Advances in Parallel and Distributed Computing for Fuzzy Systems
    Guoqing Xiao
    Kenli Li
    Maozhen Li
    Lipo Wang
    International Journal of Fuzzy Systems, 2019, 21 : 1868 - 1869
  • [8] ON PROCESS ASSIGNMENT IN PARALLEL COMPUTING
    BURTON, FW
    MCKEOWN, GP
    RAYWARDSMITH, VJ
    INFORMATION PROCESSING LETTERS, 1988, 29 (01) : 31 - 34
  • [9] Parallel computing efficiency of SWAN 40.91
    Rautenbach, Christo
    Mullarney, Julia C.
    Bryan, Karin R.
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2021, 14 (07) : 4241 - 4247
  • [10] Process efficiency of two-stage systems with fuzzy data
    Lozano, Sebastian
    FUZZY SETS AND SYSTEMS, 2014, 243 : 36 - 49