On the unique solution of the generalized absolute value equation

被引:0
|
作者
Shiliang Wu
Shuqian Shen
机构
[1] Yunnan Normal University,School of Mathematics
[2] China University of Petroleum,College of Science
来源
Optimization Letters | 2021年 / 15卷
关键词
Generalized absolute value equation; Unique solution; Necessary and Sufficient condition; 90C05; 90C30; 65F10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, some useful necessary and sufficient conditions for the unique solution of the generalized absolute value equation (GAVE) Ax-B|x|=b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ax-B|x|=b$$\end{document} with A,B∈Rn×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A, B\in \mathbb {R}^{n\times n}$$\end{document} from the optimization field are first presented, which cover the fundamental theorem for the unique solution of the linear system Ax=b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ax=b$$\end{document} with A∈Rn×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\in \mathbb {R}^{n\times n}$$\end{document}. Not only that, some new sufficient conditions for the unique solution of the GAVE are obtained, which are weaker than the previous published works.
引用
收藏
页码:2017 / 2024
页数:7
相关论文
共 50 条
  • [41] Primal-dual bilinear programming solution of the absolute value equation
    Mangasarian, Olvi L.
    OPTIMIZATION LETTERS, 2012, 6 (07) : 1527 - 1533
  • [42] A generalized solution of boundary value problem for an elliptic equation on a graph
    Volkova, A. S.
    IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA, 2012, (01): : 28 - 29
  • [43] Newton-based matrix splitting method for generalized absolute value equation
    Zhou, Hong-Yu
    Wu, Shi-Liang
    Li, Cui-Xia
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 394
  • [44] A modified generalized SOR-like method for solving an absolute value equation
    Zhang, Jia-Lin
    Zhang, Guo-Feng
    Liang, Zhao-Zheng
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (09): : 1578 - 1595
  • [45] A class of maximum-based iteration methods for the generalized absolute value equation
    Wu, Shiliang
    Han, Deren
    Li, Cuixia
    APPLIED MATHEMATICS LETTERS, 2024, 156
  • [46] ON GENERALIZED ABSOLUTE VALUE EQUATIONS
    Noor, M. A.
    Noor, K. I.
    Batool, S.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2018, 80 (04): : 63 - 70
  • [47] On generalized absolute value equations
    Noor, M.A. (noormaslam@gmail.com), 2018, Politechnica University of Bucharest (80):
  • [48] The solution of the absolute value equations using two generalized accelerated overrelaxation methods
    Ali, Rashid
    Pan, Kejia
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (08)
  • [49] Convergence of the modified Newton-type iteration method for the generalized absolute value equation
    Fang, Ximing
    Huang, Minhai
    ARABIAN JOURNAL OF MATHEMATICS, 2025, : 29 - 37
  • [50] The Asymptotic Solution of the Initial Boundary Value Problem to a Generalized Boussinesq Equation
    Yin, Zheng
    Zhang, Feng
    ABSTRACT AND APPLIED ANALYSIS, 2012,