On the unique solution of the generalized absolute value equation

被引:0
|
作者
Shiliang Wu
Shuqian Shen
机构
[1] Yunnan Normal University,School of Mathematics
[2] China University of Petroleum,College of Science
来源
Optimization Letters | 2021年 / 15卷
关键词
Generalized absolute value equation; Unique solution; Necessary and Sufficient condition; 90C05; 90C30; 65F10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, some useful necessary and sufficient conditions for the unique solution of the generalized absolute value equation (GAVE) Ax-B|x|=b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ax-B|x|=b$$\end{document} with A,B∈Rn×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A, B\in \mathbb {R}^{n\times n}$$\end{document} from the optimization field are first presented, which cover the fundamental theorem for the unique solution of the linear system Ax=b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ax=b$$\end{document} with A∈Rn×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\in \mathbb {R}^{n\times n}$$\end{document}. Not only that, some new sufficient conditions for the unique solution of the GAVE are obtained, which are weaker than the previous published works.
引用
收藏
页码:2017 / 2024
页数:7
相关论文
共 50 条