Composite quantile regression for single-index models with asymmetric errors

被引:0
|
作者
Jing Sun
机构
[1] Ludong University,School of Mathematics and Statistics Science
来源
Computational Statistics | 2016年 / 31卷
关键词
Composite quantile regression; Single-index model; Asymptotic relative efficiency; Symmetric and asymmetric distributions; Optimal weight vector;
D O I
暂无
中图分类号
学科分类号
摘要
For the single-index model, a composite quantile regression technique is proposed in this paper to construct robust and efficient estimation. Theoretical analysis reveals that the proposed estimate of the single-index vector is highly efficient relative to its corresponding least squares estimate. For the single-index vector, the proposed method is always valid across a wide spectrum of error distributions; even in the worst case scenario, the asymptotic relative efficiency has a lower bound 86.4 %. Meanwhile, we employ weighted local composite quantile regression to obtain a consistent and robust estimate for the nonparametric component in the single-index model, which is adapted to both symmetric and asymmetric distributions. Numerical study and a real data analysis can further illustrate our theoretical findings.
引用
收藏
页码:329 / 351
页数:22
相关论文
共 50 条
  • [21] Single-index composite quantile regression with heteroscedasticity and general error distributions
    Jiang, Rong
    Qian, Wei-Min
    Zhou, Zhan-Gong
    [J]. STATISTICAL PAPERS, 2016, 57 (01) : 185 - 203
  • [22] Composite quantile regression and variable selection in single-index coefficient model
    Zhang, Riquan
    Lv, Yazhao
    Zhao, Weihua
    Liu, Jicai
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2016, 176 : 1 - 21
  • [23] Single-index composite quantile regression with heteroscedasticity and general error distributions
    Rong Jiang
    Wei-Min Qian
    Zhan-Gong Zhou
    [J]. Statistical Papers, 2016, 57 : 185 - 203
  • [24] Quantile regression for the single-index coefficient model
    Zhao, Weihua
    Lian, Heng
    Liang, Hua
    [J]. BERNOULLI, 2017, 23 (03) : 1997 - 2027
  • [25] Single-index composite quantile regression for ultra-high-dimensional data
    Jiang, Rong
    Sun, Mengxian
    [J]. TEST, 2022, 31 (02) : 443 - 460
  • [26] Single-index composite quantile regression for ultra-high-dimensional data
    Rong Jiang
    Mengxian Sun
    [J]. TEST, 2022, 31 : 443 - 460
  • [27] Extreme quantile regression for tail single-index varying-coefficient models
    Wang, Yingjie
    Liu, Xinsheng
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (09) : 2860 - 2881
  • [28] Quantile regression and variable selection for single-index varying-coefficient models
    Yang, Jing
    Yang, Hu
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (06) : 4637 - 4653
  • [29] Variable selection in heteroscedastic single-index quantile regression
    Christou, Eliana
    Akritas, Michael G.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (24) : 6019 - 6033
  • [30] SIQR: An R Package for Single-index Quantile Regression
    Zu, Tianhai
    Yu, Yan
    [J]. R JOURNAL, 2021, 13 (02): : 460 - 470