Single-index composite quantile regression for ultra-high-dimensional data

被引:2
|
作者
Jiang, Rong [1 ]
Sun, Mengxian [1 ]
机构
[1] Donghua Univ, Coll Sci, Dept Stat, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Single-index model; High-dimensional data; Composite quantile regression; Debiased estimator; CONFIDENCE-INTERVALS; VARIABLE SELECTION; EFFICIENT; LASSO;
D O I
10.1007/s11749-021-00785-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Composite quantile regression (CQR) is a robust and efficient estimation method. This paper studies CQR method for single-index models with ultra-high-dimensional data. We propose a penalized CQR estimator for single-index models and combine the debiasing technique with the CQR method to construct an estimator that is asymptotically normal, which enables the construction of valid confidence intervals and hypothesis testing. Both simulations and data analysis are conducted to illustrate the finite sample performance of the proposed methods.
引用
收藏
页码:443 / 460
页数:18
相关论文
共 50 条
  • [1] Single-index composite quantile regression for ultra-high-dimensional data
    Rong Jiang
    Mengxian Sun
    [J]. TEST, 2022, 31 : 443 - 460
  • [2] Ultra-High Dimensional Single-Index Quantile Regression
    Zhang, Yuankun
    Lian, Heng
    Yu, Yan
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [3] Ultra-High dimensional single-index quantile regression
    Zhang, Yuankun
    Lian, Heng
    Yu, Yan
    [J]. Journal of Machine Learning Research, 2020, 21
  • [4] Single-index composite quantile regression for massive data
    Jiang, Rong
    Yu, Keming
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2020, 180
  • [5] Single-index composite quantile regression
    Jiang, Rong
    Zhou, Zhan-Gong
    Qian, Wei-Min
    Shao, Wen-Qiong
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2012, 41 (03) : 323 - 332
  • [6] Single-index composite quantile regression
    Rong Jiang
    Zhan-Gong Zhou
    Wei-Min Qian
    Wen-Qiong Shao
    [J]. Journal of the Korean Statistical Society, 2012, 41 : 323 - 332
  • [7] Test for single-index composite quantile regression
    Jiang, Rong
    Qian, Wei-Min
    Zhou, Zhan-Gong
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2014, 43 (05): : 861 - 871
  • [8] Functional single-index composite quantile regression
    Zhiqiang Jiang
    Zhensheng Huang
    Jing Zhang
    [J]. Metrika, 2023, 86 : 595 - 603
  • [9] Functional single-index composite quantile regression
    Jiang, Zhiqiang
    Huang, Zhensheng
    Zhang, Jing
    [J]. METRIKA, 2023, 86 (05) : 595 - 603
  • [10] Bayesian composite quantile regression for the single-index model
    Yuan, Xiaohui
    Xiang, Xuefei
    Zhang, Xinran
    [J]. PLOS ONE, 2023, 18 (05):