Improved Approximation Algorithms for the Facility Location Problems with Linear/Submodular Penalties

被引:0
|
作者
Yu Li
Donglei Du
Naihua Xiu
Dachuan Xu
机构
[1] Beijing Jiaotong University,Department of Mathematics, School of Science
[2] University of New Brunswick,Faculty of Business Administration
[3] Beijing University of Technology,Department of Applied Mathematics
来源
Algorithmica | 2015年 / 73卷
关键词
Approximation algorithm; Facility location problem ; LP rounding; Submodular function;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the facility location problem with submodular penalties (FLPSP) and the facility location problem with linear penalties (FLPLP), two extensions of the classical facility location problem (FLP). First, we introduce a general algorithmic framework for a class of covering problems with submodular penalties, extending the recent result of Geunes et al. (Math Program 130:85–106, 2011) with linear penalties. This framework leverages existing approximation results for the original covering problems to obtain corresponding results for their counterparts with submodular penalties. Specifically, any LP-based α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-approximation for the original covering problem can be leveraged to obtain an 1-e-1/α-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( 1-e^{-1/\alpha }\right) ^{-1}$$\end{document}-approximation algorithm for the counterpart with submodular penalties. Consequently, any LP-based approximation algorithm for the classical FLP (as a covering problem) can yield, via this framework, an approximation algorithm for the counterpart with submodular penalties. Second, by exploiting some special properties of submodular/linear penalty function, we present an LP rounding algorithm which has the currently best 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document}-approximation ratio over the previously best 2.375\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.375$$\end{document} by Li et al. (Theoret Comput Sci 476:109–117, 2013) for the FLPSP and another LP-rounding algorithm which has the currently best 1.5148\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.5148$$\end{document}-approximation ratio over the previously best 1.853\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.853$$\end{document} by Xu and Xu (J Comb Optim 17:424–436, 2008) for the FLPLP, respectively.
引用
收藏
页码:460 / 482
页数:22
相关论文
共 50 条
  • [41] Combinatorial approximation algorithms for the submodular multicut problem in trees with submodular penalties
    Liu, Xiaofei
    Li, Weidong
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (03) : 1964 - 1976
  • [42] Improved approximation algorithms for uncapacitated facility location
    Chudak, FA
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, 1998, 1412 : 180 - 194
  • [43] Combinatorial approximation algorithms for the submodular multicut problem in trees with submodular penalties
    Xiaofei Liu
    Weidong Li
    Journal of Combinatorial Optimization, 2022, 44 : 1964 - 1976
  • [44] Approximation algorithms for the fault-tolerant facility location problem with penalties
    Ji, Sai
    Xu, Dachuan
    Du, Donglei
    Wu, Chenchen
    DISCRETE APPLIED MATHEMATICS, 2019, 264 : 62 - 75
  • [45] Approximation algorithms for connected facility location problems
    Mohammad Khairul Hasan
    Hyunwoo Jung
    Kyung-Yong Chwa
    Journal of Combinatorial Optimization, 2008, 16 : 155 - 172
  • [46] Approximation Algorithms for Bounded Facility Location Problems
    Piotr Krysta
    Roberto Solis-Oba
    Journal of Combinatorial Optimization, 2001, 5 : 233 - 247
  • [47] Approximation algorithms for connected facility location problems
    Hasan, Mohammad Khairul
    Jung, Hyunwoo
    Chwa, Kyung-Yong
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2008, 16 (02) : 155 - 172
  • [48] APPROXIMATION ALGORITHMS FOR MULTICOMMODITY FACILITY LOCATION PROBLEMS
    Ravi, R.
    Sinha, Amitabh
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 24 (02) : 538 - 551
  • [49] Approximation algorithms for bounded facility location problems
    Krysta, P
    Solis-Oba, R
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2001, 5 (02) : 233 - 247
  • [50] Improved combinatorial algorithms for facility location problems
    Charikar, M
    Guha, S
    SIAM JOURNAL ON COMPUTING, 2005, 34 (04) : 803 - 824