Improved Approximation Algorithms for the Facility Location Problems with Linear/Submodular Penalties

被引:0
|
作者
Yu Li
Donglei Du
Naihua Xiu
Dachuan Xu
机构
[1] Beijing Jiaotong University,Department of Mathematics, School of Science
[2] University of New Brunswick,Faculty of Business Administration
[3] Beijing University of Technology,Department of Applied Mathematics
来源
Algorithmica | 2015年 / 73卷
关键词
Approximation algorithm; Facility location problem ; LP rounding; Submodular function;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the facility location problem with submodular penalties (FLPSP) and the facility location problem with linear penalties (FLPLP), two extensions of the classical facility location problem (FLP). First, we introduce a general algorithmic framework for a class of covering problems with submodular penalties, extending the recent result of Geunes et al. (Math Program 130:85–106, 2011) with linear penalties. This framework leverages existing approximation results for the original covering problems to obtain corresponding results for their counterparts with submodular penalties. Specifically, any LP-based α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-approximation for the original covering problem can be leveraged to obtain an 1-e-1/α-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( 1-e^{-1/\alpha }\right) ^{-1}$$\end{document}-approximation algorithm for the counterpart with submodular penalties. Consequently, any LP-based approximation algorithm for the classical FLP (as a covering problem) can yield, via this framework, an approximation algorithm for the counterpart with submodular penalties. Second, by exploiting some special properties of submodular/linear penalty function, we present an LP rounding algorithm which has the currently best 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document}-approximation ratio over the previously best 2.375\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.375$$\end{document} by Li et al. (Theoret Comput Sci 476:109–117, 2013) for the FLPSP and another LP-rounding algorithm which has the currently best 1.5148\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.5148$$\end{document}-approximation ratio over the previously best 1.853\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.853$$\end{document} by Xu and Xu (J Comb Optim 17:424–436, 2008) for the FLPLP, respectively.
引用
收藏
页码:460 / 482
页数:22
相关论文
共 50 条
  • [31] Combinatorial approximation algorithms for the robust facility location problem with penalties
    Fengmin Wang
    Dachuan Xu
    Chenchen Wu
    Journal of Global Optimization, 2016, 64 : 483 - 496
  • [32] Combinatorial approximation algorithms for the robust facility location problem with penalties
    Wang, Fengmin
    Xu, Dachuan
    Wu, Chenchen
    JOURNAL OF GLOBAL OPTIMIZATION, 2016, 64 (03) : 483 - 496
  • [33] Approximation algorithms for the submodular edge cover problem with submodular penalties
    Wang, Xin
    Gao, Suogang
    Hou, Bo
    Wu, Lidong
    Liu, Wen
    THEORETICAL COMPUTER SCIENCE, 2021, 871 (871) : 126 - 133
  • [34] Approximation algorithms for the multiprocessor scheduling with submodular penalties
    Liu, Xiaofei
    Li, Weidong
    OPTIMIZATION LETTERS, 2021, 15 (06) : 2165 - 2180
  • [35] Approximation algorithms for the multiprocessor scheduling with submodular penalties
    Xiaofei Liu
    Weidong Li
    Optimization Letters, 2021, 15 : 2165 - 2180
  • [36] A combinatorial approximation algorithm for k-level facility location problem with submodular penalties
    Zhang, Li
    Yuan, Jing
    Xu, Zhizhen
    Li, Qiaoliang
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2023, 46 (01)
  • [37] A combinatorial approximation algorithm for k-level facility location problem with submodular penalties
    Li Zhang
    Jing Yuan
    Zhizhen Xu
    Qiaoliang Li
    Journal of Combinatorial Optimization, 2023, 46
  • [38] An improved approximation algorithm for uncapacitated facility location problem with penalties
    Guang Xu
    Jinhui Xu
    Journal of Combinatorial Optimization, 2009, 17 : 424 - 436
  • [39] An improved approximation algorithm for uncapacitated facility location problem with penalties
    Xu, Guang
    Xu, Jinhui
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2009, 17 (04) : 424 - 436
  • [40] An improved approximation algorithm for uncapacitated facility location problem with penalties
    Xu, G
    Xu, JH
    COMPUTING AND COMBINATORICS, PROCEEDINGS, 2005, 3595 : 644 - 653