Structural mechanism of GTPase-powered ribosome-tRNA movement

被引:0
|
作者
Valentyn Petrychenko
Bee-Zen Peng
Ana C. de A. P. Schwarzer
Frank Peske
Marina V. Rodnina
Niels Fischer
机构
[1] Max Planck Institute for Biophysical Chemistry,Department of Structural Dynamics
[2] Max Planck Institute for Biophysical Chemistry,Department of Physical Biochemistry
[3] University Medical Center Göttingen,Department of Molecular Biology
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
GTPases are regulators of cell signaling acting as molecular switches. The translational GTPase EF-G stands out, as it uses GTP hydrolysis to generate force and promote the movement of the ribosome along the mRNA. The key unresolved question is how GTP hydrolysis drives molecular movement. Here, we visualize the GTPase-powered step of ongoing translocation by time-resolved cryo-EM. EF-G in the active GDP–Pi form stabilizes the rotated conformation of ribosomal subunits and induces twisting of the sarcin-ricin loop of the 23 S rRNA. Refolding of the GTPase switch regions upon Pi release initiates a large-scale rigid-body rotation of EF-G pivoting around the sarcin-ricin loop that facilitates back rotation of the ribosomal subunits and forward swiveling of the head domain of the small subunit, ultimately driving tRNA forward movement. The findings demonstrate how a GTPase orchestrates spontaneous thermal fluctuations of a large RNA-protein complex into force-generating molecular movement.
引用
收藏
相关论文
共 50 条
  • [31] Spontaneous reverse movement of mRNA-bound tRNA through the ribosome
    Konevega, Andrey L.
    Fischer, Niels
    Semenkov, Yuri P.
    Stark, Holger
    Wintermeyer, Wolfgang
    Rodnina, Marina V.
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2007, 14 (04) : 318 - 324
  • [32] Mechanism of elongation factor G function in tRNA translocation on the ribosome
    Wintermeyer, W
    Savelsbergh, A
    Semenkov, YP
    Katunin, VI
    Rodnina, MV
    COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY, 2001, 66 : 449 - 458
  • [33] The structural basis for specific decoding of AUA by isoleucine tRNA on the ribosome
    Voorhees, Rebecca M.
    Mandal, Debabrata
    Neubauer, Cajetan
    Koehrer, Caroline
    RajBhandary, Uttam L.
    Ramakrishnan, V.
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2013, 20 (05) : 641 - +
  • [34] The structural basis for specific decoding of AUA by isoleucine tRNA on the ribosome
    Rebecca M Voorhees
    Debabrata Mandal
    Cajetan Neubauer
    Caroline Köhrer
    Uttam L RajBhandary
    V Ramakrishnan
    Nature Structural & Molecular Biology, 2013, 20 : 641 - 643
  • [35] Structural basis for messenger RNA movement on the ribosome
    Yusupova, Gulnara
    Jenner, Lasse
    Rees, Bernard
    Moras, Dino
    Yusupov, Marat
    NATURE, 2006, 444 (7117) : 391 - 394
  • [36] Structural basis for messenger RNA movement on the ribosome
    Gulnara Yusupova
    Lasse Jenner
    Bernard Rees
    Dino Moras
    Marat Yusupov
    Nature, 2006, 444 : 391 - 394
  • [37] Structural basis for messenger RNA movement on the ribosome
    Jenner, L.
    Yusupova, G.
    Rees, B.
    Yusupov, M.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2007, 63 : S16 - S16
  • [38] Structural basis of GTPase-mediated mitochondrial ribosome biogenesis and recycling
    Hauke S. Hillen
    Elena Lavdovskaia
    Franziska Nadler
    Elisa Hanitsch
    Andreas Linden
    Katherine E. Bohnsack
    Henning Urlaub
    Ricarda Richter-Dennerlein
    Nature Communications, 12
  • [39] Structural basis of GTPase-mediated mitochondrial ribosome biogenesis and recycling
    Hillen, Hauke S.
    Lavdovskaia, Elena
    Nadler, Franziska
    Hanitsch, Elisa
    Linden, Andreas
    Bohnsack, Katherine E.
    Urlaub, Henning
    Richter-Dennerlein, Ricarda
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [40] Simulating movement of tRNA through the ribosome during hybrid-state formation
    Whitford, Paul C.
    Sanbonmatsu, Karissa Y.
    JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (12):