Probabilistic seismic hazard assessment of Himachal Pradesh and adjoining regions

被引:0
|
作者
NILESH SHALIGRAM PATIL
JOSODHIR DAS
ASHWANI KUMAR
MADAN MOHAN ROUT
RANJIT DAS
机构
[1] Indian Institute of Technology Roorkee,Department of Earthquake Engineering
来源
关键词
Himachal Pradesh; seismicity, PSHA; seismogenic source zones; PGA;
D O I
暂无
中图分类号
学科分类号
摘要
Seismically active Himachal Pradesh and adjoining regions comprising Himalayan orogenic belt with the experience of the great Kangra earthquake of 1905, has high potential for river valley projects. There are already operating hydropower projects, some under construction and a few more coming up. In view of this it is important to know the ground motion nature for various locales. The present study is about estimation of Peak Ground Acceleration (PGA) for the state of Himachal Pradesh and adjoining regions using probabilistic seismic hazard analysis (PSHA) approach. Standard procedure for PSHA has been adopted for this study and peak ground motion has been estimated for 10% and 2% probability of exceedance in 50 years at the bed rock level considering two cases: (i) varying b-value for each source zone, (ii) constant b-value for each source zone. For 10% probability of exceedance in 50 years, the PGA values vary from 0.096 to 0.15 g and 0.09 to 0.26 g considering varying b-value, and constant b-value, respectively. In case of 2% probability of exceedance in 50 years, the PGA varies between 0.07 to 0.24 g considering varying b-values and 0.14 to 0.37 g considering constant b-values. Higher PGA values are observed in the southeast part considering varying b-values whereas the region situated around Kaurik Fault System (KFS) has shown higher PGA values in case of constant b-value.
引用
收藏
页码:49 / 62
页数:13
相关论文
共 50 条
  • [21] On the Probabilistic Seismic Hazard Assessment in Kazakhstan
    Natalya Silacheva
    Geotechnical and Geological Engineering, 2023, 41 : 1429 - 1437
  • [22] A PROBABILISTIC ASSESSMENT OF THE SEISMIC HAZARD IN TURKEY
    ERDIK, M
    DOYURAN, V
    AKKAS, N
    GULKAN, P
    TECTONOPHYSICS, 1985, 117 (3-4) : 295 - 344
  • [23] PROBABILISTIC SEISMIC HAZARD ASSESSMENT OF ALBANIA
    Fundo, A.
    Duni, Ll
    Kuka, Sh
    Begu, E.
    Kuka, N.
    ACTA GEODAETICA ET GEOPHYSICA HUNGARICA, 2012, 47 (04): : 465 - 479
  • [24] Probabilistic seismic hazard assessment for Singapore
    Wenqi Du
    Tso-Chien Pan
    Natural Hazards, 2020, 103 : 2883 - 2903
  • [25] Probabilistic seismic hazard assessment for Iraq
    Wathiq Abdulnaby
    Tuna Onur
    Rengin Gök
    Ammar M. Shakir
    Hanan Mahdi
    Haydar Al-Shukri
    Nazar M.S. Numan
    Najah A. Abd
    Hussein K. Chlaib
    Taher H. Ameen
    Ali Ramthan
    Journal of Seismology, 2020, 24 : 595 - 611
  • [26] Probabilistic seismic hazard assessment of Sweden
    Joshi, Niranjan
    Lund, Bjorn
    Roberts, Roland
    NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2024, 24 (11) : 4199 - 4223
  • [27] Probabilistic Seismic Hazard Assessment for Taiwan
    Wang, Yu-Ju
    Chan, Chung-Han
    Lee, Ya-Ting
    Ma, Kuo-Fong
    Shyu, J. Bruce H.
    Rau, Ruey-Juin
    Cheng, Chin-Tung
    TERRESTRIAL ATMOSPHERIC AND OCEANIC SCIENCES, 2016, 27 (03): : 325 - 340
  • [28] PROBABILISTIC SEISMIC HAZARD ASSESSMENT FOR THE NETHERLANDS
    DECROOK, T
    GEOLOGIE EN MIJNBOUW, 1993, 72 (01) : 1 - 13
  • [29] Probabilistic seismic hazard assessment for Nepal
    Parajuli, H. Ram
    Kiyono, J.
    Taniguchi, H.
    Toki, K.
    Maskey, P. Nath
    RISK ANALYSIS VII: SIMULATION AND HAZARD MITIGATION & BROWNFIELDS V: PREVENTION, ASSESSMENT, REHABILITATION AND DEVELOPMENT OF BROWNFIELD SITES, 2010, : PI405 - PI416
  • [30] Probabilistic seismic hazard assessment for Thailand
    Ornthammarath, Teraphan
    Warnitchai, Pennung
    Worakanchana, Kawin
    Zaman, Saeed
    Sigbjornsson, Ragnar
    Lai, Carlo Giovanni
    BULLETIN OF EARTHQUAKE ENGINEERING, 2011, 9 (02) : 367 - 394