Arrested Bubble Rise in a Narrow Tube

被引:0
|
作者
Catherine Lamstaes
Jens Eggers
机构
[1] University of Bristol,School of Mathematics
[2] University Walk,undefined
来源
关键词
Singularities; Thin film flow; Lubrication theory; Surface tension;
D O I
暂无
中图分类号
学科分类号
摘要
If a long air bubble is placed inside a vertical tube closed at the top it can rise by displacing the fluid above it. However, Bretherton found that if the tube radius, R, is smaller than a critical value Rc=0.918ℓc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{c}=0.918 \; \ell _c$$\end{document}, where ℓc=γ/ρg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _c=\sqrt{\gamma /\rho g}$$\end{document} is the capillary length, there is no solution corresponding to steady rise. Experimentally, the bubble rise appears to have stopped altogether. Here we explain this observation by studying the unsteady bubble motion for R<Rc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R<R_{c}$$\end{document}. We find that the minimum spacing between the bubble and the tube goes to zero in limit of large t like t-4/5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t^{-4/5}$$\end{document}, leading to a rapid slow-down of the bubble’s mean speed U∝t-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U \propto t^{-2}$$\end{document}. As a result, the total bubble rise in infinite time remains very small, giving the appearance of arrested motion.
引用
收藏
页码:656 / 682
页数:26
相关论文
共 50 条
  • [41] Bubble Rise Velocity in a Fiber Suspension
    Zhang, Wen-Hui
    Jiang, Xiaoya
    Du, Weitao
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2013, 52 (24) : 8340 - 8345
  • [42] TERMINAL BUBBLE RISE VELOCITY IN LIQUIDS
    JAMIALAHMADI, M
    BRANCH, C
    MULLERSTEINHAGEN, H
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 1994, 72 (A1): : 119 - 122
  • [43] BUBBLE RISE UNDER AN INCLINED PLATE
    MAXWORTHY, T
    JOURNAL OF FLUID MECHANICS, 1991, 229 : 659 - 673
  • [44] BUBBLE FORMATION FROM A VERY NARROW SLOT
    LI, RQ
    HARRIS, R
    CANADIAN METALLURGICAL QUARTERLY, 1993, 32 (01) : 31 - 37
  • [45] Research on bubble coalescence in narrow rectangular channel
    Gao, P.-Z. (gaopuzhen@sina.com), 1600, Atomic Energy Press (48):
  • [46] THE BEHAVIOR OF A BUBBLE BETWEEN NARROW PARALLEL PLATES
    SHIMA, A
    SATO, Y
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1980, 31 (06): : 691 - 704
  • [47] Study on a single flattened bubble in a narrow channel
    Moriyama, Kiyofumi
    Inoue, Akira
    Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 1993, 59 (560): : 1003 - 1011
  • [49] Large bubble sizes and rise velocities in a bubble column slurry reactor
    Vandu, CO
    Koop, K
    Krishna, R
    CHEMICAL ENGINEERING & TECHNOLOGY, 2004, 27 (11) : 1195 - 1199
  • [50] LIQUID RISE IN A CAPILLARY TUBE
    IKEDA, Y
    SOEYA, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1949, 4 (4-6) : 306 - 310