Arrested Bubble Rise in a Narrow Tube

被引:0
|
作者
Catherine Lamstaes
Jens Eggers
机构
[1] University of Bristol,School of Mathematics
[2] University Walk,undefined
来源
关键词
Singularities; Thin film flow; Lubrication theory; Surface tension;
D O I
暂无
中图分类号
学科分类号
摘要
If a long air bubble is placed inside a vertical tube closed at the top it can rise by displacing the fluid above it. However, Bretherton found that if the tube radius, R, is smaller than a critical value Rc=0.918ℓc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{c}=0.918 \; \ell _c$$\end{document}, where ℓc=γ/ρg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _c=\sqrt{\gamma /\rho g}$$\end{document} is the capillary length, there is no solution corresponding to steady rise. Experimentally, the bubble rise appears to have stopped altogether. Here we explain this observation by studying the unsteady bubble motion for R<Rc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R<R_{c}$$\end{document}. We find that the minimum spacing between the bubble and the tube goes to zero in limit of large t like t-4/5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t^{-4/5}$$\end{document}, leading to a rapid slow-down of the bubble’s mean speed U∝t-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U \propto t^{-2}$$\end{document}. As a result, the total bubble rise in infinite time remains very small, giving the appearance of arrested motion.
引用
收藏
页码:656 / 682
页数:26
相关论文
共 50 条
  • [21] BUBBLE GUM IN TUBE
    不详
    FOOD ENGINEERING, 1983, 55 (12): : 35 - 35
  • [22] Effect of bubble surface loading on bubble rise velocity
    Wang, Ai
    Hoque, Mohammad Mainul
    Moreno-Atanasio, Roberto
    Doroodchi, Elham
    Evans, Geoffrey
    Mitra, Subhasish
    MINERALS ENGINEERING, 2021, 174
  • [23] The narrow Θ(1543) -: a QCD dilemma:: tube or not tube?
    Casher, A
    Nussinov, S
    PHYSICS LETTERS B, 2004, 578 (1-2) : 124 - 132
  • [24] Evolution of the Plasma Bubble in a Narrow Gap
    Chu, Hong-Yu
    Lee, Hung-Ken
    PHYSICAL REVIEW LETTERS, 2011, 107 (22)
  • [25] Dynamics of an oscillating bubble in a narrow gap
    Ibn Azam, Fahad
    Karri, Badarinath
    Ohl, Siew-Wan
    Klaseboer, Evert
    Khoo, Boo Cheong
    PHYSICAL REVIEW E, 2013, 88 (04):
  • [26] Gas combustion in a narrow tube
    Zamashchikov, VV
    COMBUSTION EXPLOSION AND SHOCK WAVES, 2000, 36 (02) : 176 - 180
  • [27] Narrow tube spray drying
    Mansouri, S.
    Hena, V. Suriya
    Woo, M. W.
    DRYING TECHNOLOGY, 2016, 34 (09) : 1043 - 1051
  • [28] Gas combustion in a narrow tube
    V. V. Zamashchikov
    Combustion, Explosion and Shock Waves, 2000, 36 : 176 - 180
  • [29] On the rise velocity of an interactive bubble in liquids
    Zhang, J
    Fan, LS
    CHEMICAL ENGINEERING JOURNAL, 2003, 92 (1-3) : 169 - 176
  • [30] THE RISE OF A CYLINDRICAL BUBBLE IN AN INVISCID LIQUID
    BAUMEL, RT
    BURLEY, SK
    FREEMAN, DF
    GAMMEL, JL
    NUTTALL, J
    CANADIAN JOURNAL OF PHYSICS, 1982, 60 (07) : 999 - 1007