Some explicit formulas of Lyapunov exponents for three-dimensional quadratic mappings

被引:0
|
作者
Zeraoulia Elhadj
J. C. Sprott
机构
[1] University of Tébessa,Department of Mathematics
[2] University of Wisconsin,Department of Physics
来源
关键词
three-dimensional quadratic map; chaos; Lyapunov exponent; rigorous formula; 05.45.-a; 05.45.Gg;
D O I
暂无
中图分类号
学科分类号
摘要
This paper shows that there exist six different cases where it is possible to find rigorously a Lyapunov exponent for three-dimensional quadratic mappings. Some elementary examples are also given and discussed.
引用
收藏
页码:549 / 555
页数:6
相关论文
共 50 条
  • [41] On a class of three-dimensional quadratic Hamiltonian systems
    Tudoran, Razvan M.
    APPLIED MATHEMATICS LETTERS, 2012, 25 (09) : 1214 - 1216
  • [42] Quadratic Algebras for Three-Dimensional Superintegrable Systems
    Daskaloyannis, C.
    Tanoudis, Y.
    PHYSICS OF ATOMIC NUCLEI, 2010, 73 (02) : 214 - 221
  • [43] The maximal Lyapunov exponent for a three-dimensional stochastic system
    Yang, Jianhua
    Liu, Xianbin
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2010, 42 (03): : 521 - 528
  • [44] Some formulas for Lyapunov exponents and rotation numbers in two dimensions and the stability of the harmonic oscillator and the inverted pendulum
    Imkeller, P
    Lederer, C
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2001, 16 (01): : 29 - 61
  • [45] The moment Lyapunov exponent for a three-dimensional stochastic system
    Li, Xuan
    Liu, Xianbin
    CHAOS SOLITONS & FRACTALS, 2014, 68 : 40 - 47
  • [46] The maximal Lyapunov exponent for a three-dimensional stochastic system
    Liew, KM
    Liu, XB
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2004, 71 (05): : 677 - 690
  • [47] Computation of complete Lyapunov functions for three-dimensional systems
    Argaez, Carlos
    Giesl, Peter
    Hafstein, Sigurdur
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 4059 - 4064
  • [48] Duality mappings within three-dimensional nonlinear electrodynamics
    Cataldo, M
    PHYSICS LETTERS B, 2002, 546 (3-4) : 287 - 299
  • [49] The three-dimensional transfer function and phase space mappings
    Sheppard, CJR
    Larkin, KG
    OPTIK, 2001, 112 (05): : 189 - 192
  • [50] Quantum critical exponents for a disordered three-dimensional Weyl node
    Sbierski, Bjoern
    Bergholtz, Emil J.
    Brouwer, Piet W.
    PHYSICAL REVIEW B, 2015, 92 (11)