Some explicit formulas of Lyapunov exponents for three-dimensional quadratic mappings

被引:0
|
作者
Zeraoulia Elhadj
J. C. Sprott
机构
[1] University of Tébessa,Department of Mathematics
[2] University of Wisconsin,Department of Physics
来源
关键词
three-dimensional quadratic map; chaos; Lyapunov exponent; rigorous formula; 05.45.-a; 05.45.Gg;
D O I
暂无
中图分类号
学科分类号
摘要
This paper shows that there exist six different cases where it is possible to find rigorously a Lyapunov exponent for three-dimensional quadratic mappings. Some elementary examples are also given and discussed.
引用
收藏
页码:549 / 555
页数:6
相关论文
共 50 条
  • [31] Stickiness in three-dimensional volume preserving mappings
    Sun, Yi-Sui
    Zhou, Li-Yong
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2009, 103 (02): : 119 - 131
  • [32] Critical exponents of the three-dimensional diluted Ising model
    Ballesteros, HG
    Fernandez, LA
    Martin-Mayor, V
    Sudupe, AM
    Parisi, G
    Ruiz-Lorenzo, JJ
    PHYSICAL REVIEW B, 1998, 58 (05) : 2740 - 2747
  • [33] Scaling exponents saturate in three-dimensional isotropic turbulence
    Iyer, Kartik P.
    Sreenivasan, Katepalli R.
    Yeung, P. K.
    PHYSICAL REVIEW FLUIDS, 2020, 5 (05)
  • [34] Mappings of the three-dimensional sphere into an n-dimensional complex
    Pontrjagin, L
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES DE L URSS, 1942, 34 : 35 - 37
  • [35] Massless three-dimensional QED with explicit fermions
    Lee, D
    Maris, P
    PHYSICAL REVIEW D, 2003, 67 (07)
  • [36] Highly efficient computation of Finite-Time Lyapunov Exponents (FTLE) on GPUs based on three-dimensional SPH datasets
    Dauch, T. F.
    Rapp, T.
    Chaussonnet, G.
    Braun, S.
    Keller, M. C.
    Kaden, J.
    Koch, R.
    Dachsbacher, C.
    Bauer, H. -J.
    COMPUTERS & FLUIDS, 2018, 175 : 129 - 141
  • [37] Three-Dimensional Quadratic Nonconforming Brick Element
    Meng, Zhaoliang
    Sheen, Dongwoo
    Luo, Zhongxuan
    Kim, Sihwan
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2014, 30 (01) : 158 - 174
  • [38] Pathways to hyperchaos in a three-dimensional quadratic map
    Muni, Sishu Shankar
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (07):
  • [39] On the Integrability of Persistent Quadratic Three-Dimensional Systems
    Fercec, Brigita
    Zulj, Maja
    Mencinger, Matej
    MATHEMATICS, 2024, 12 (09)
  • [40] Quadratic algebras for three-dimensional superintegrable systems
    C. Daskaloyannis
    Y. Tanoudis
    Physics of Atomic Nuclei, 2010, 73 : 214 - 221