Efficient Network Representation Learning via Cluster Similarity

被引:0
|
作者
Yasuhiro Fujiwara
Yasutoshi Ida
Atsutoshi Kumagai
Masahiro Nakano
Akisato Kimura
Naonori Ueda
机构
[1] NTT Communication Science Labortories,
来源
关键词
Efficient; Algorithm; Network representation learning; Graph clustering;
D O I
暂无
中图分类号
学科分类号
摘要
Network representation learning is a de facto tool for graph analytics. The mainstream of the previous approaches is to factorize the proximity matrix between nodes. However, if n is the number of nodes, since the size of the proximity matrix is n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \times n$$\end{document}, it needs O(n3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^3)$$\end{document} time and O(n2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^2)$$\end{document} space to perform network representation learning; they are significantly high for large-scale graphs. This paper introduces the novel idea of using similarities between clusters instead of proximities between nodes; the proposed approach computes the representations of the clusters from similarities between clusters and computes the representations of nodes by referring to them. If l is the number of clusters, since l≪n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l \ll n$$\end{document}, we can efficiently obtain the representations of clusters from a small l×l\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l \times l$$\end{document} similarity matrix. Furthermore, since nodes in each cluster share similar structural properties, we can effectively compute the representation vectors of nodes. Experiments show that our approach can perform network representation learning more efficiently and effectively than existing approaches.
引用
收藏
页码:279 / 291
页数:12
相关论文
共 50 条
  • [21] Network representation learning method based on hierarchical granulation using neighborhood similarity
    Qian F.
    Zhang L.
    Zhao S.
    Chen J.
    Zhang Y.
    Liu F.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2019, 32 (06): : 504 - 514
  • [22] Preserving node similarity adversarial learning graph representation with graph neural network
    Yang, Shangying
    Zhang, Yinglong
    Jiawei, E.
    Xia, Xuewen
    Xu, Xing
    ENGINEERING REPORTS, 2024, 6 (10)
  • [23] SSIMLayer: Towards Robust Deep Representation Learning via Nonlinear Structural Similarity
    Abobakr, Ahmed
    Hossny, Mohammed
    Nahavandi, Saeid
    2019 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2019, : 1234 - 1238
  • [24] Geodesic Graph Neural Network for Efficient Graph Representation Learning
    Kong, Lecheng
    Chen, Yixin
    Zhang, Muhan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [25] Network representation learning via improved random walk with restart
    Zhang, Yanan
    Shen, Jian
    Zhang, Ruisheng
    Zhao, Zhili
    KNOWLEDGE-BASED SYSTEMS, 2023, 263
  • [26] Temporal Network Representation Learning via Historical Neighborhoods Aggregation
    Huang, Shixun
    Bao, Zhifeng
    Li, Guoliang
    Zhou, Yanghao
    Culpepper, J. Shane
    2020 IEEE 36TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2020), 2020, : 1117 - 1128
  • [27] On efficient network similarity measures
    Dehmer, Matthias
    Chen, Zengqiang
    Shi, Yongtang
    Zhang, Yusen
    Tripathi, Shailesh
    Ghorbani, Modjtaba
    Mowshowitz, Abbe
    Emmert-Streib, Frank
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 362
  • [28] Multimodal Representation Learning via Graph Isomorphism Network for Toxicity Multitask Learning
    Wang, Guishen
    Feng, Hui
    Du, Mengyan
    Feng, Yuncong
    Cao, Chen
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (21) : 8322 - 8338
  • [29] Enhancing Representation of Spiking Neural Networks via Similarity-Sensitive Contrastive Learning
    Zhang, Yuhan
    Liu, Xiaode
    Chen, Yuanpei
    Peng, Weihang
    Guo, Yufei
    Huang, Xuhui
    Ma, Zhe
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 15, 2024, : 16926 - 16934
  • [30] Efficient Bad Block Management with Cluster Similarity
    Yen, Jui-Nan
    Hsieh, Yao-Ching
    Chen, Cheng-Yu
    Chen, Tseng-Yi
    Yang, Chia-Lin
    Cheng, Hsiang-Yun
    Luo, Yixin
    2022 IEEE INTERNATIONAL SYMPOSIUM ON HIGH-PERFORMANCE COMPUTER ARCHITECTURE (HPCA 2022), 2022, : 503 - 513