Geodesic Graph Neural Network for Efficient Graph Representation Learning

被引:0
|
作者
Kong, Lecheng [1 ]
Chen, Yixin [1 ]
Zhang, Muhan [2 ]
机构
[1] Washington Univ St Louis, Washington, DC 63130 USA
[2] Peking Univ, Beijing, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph Neural Networks (GNNs) have recently been applied to graph learning tasks and achieved state-of-the-art (SOTA) results. However, many competitive methods run GNNs multiple times with subgraph extraction and customized labeling to capture information that is hard for normal GNNs to learn. Such operations are time-consuming and do not scale to large graphs. In this paper, we propose an efficient GNN framework called Geodesic GNN (GDGNN) that requires only one GNN run and injects conditional relationships between nodes into the model without labeling. This strategy effectively reduces the runtime of subgraph methods. Specifically, we view the shortest paths between two nodes as the spatial graph context of the neighborhood around them. The GNN embeddings of nodes on the shortest paths are used to generate geodesic representations. Conditioned on the geodesic representations, GDGNN can generate node, link, and graph representations that carry much richer structural information than plain GNNs. We theoretically prove that GDGNN is more powerful than plain GNNs. We present experimental results to show that GDGNN achieves highly competitive performance with SOTA GNN models on various graph learning tasks while taking significantly less time.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Multi-graph aggregated graph neural network for heterogeneous graph representation learning
    Zhu, Shuailei
    Wang, Xiaofeng
    Lai, Shuaiming
    Chen, Yuntao
    Zhai, Wenchao
    Quan, Daying
    Qi, Yuanyuan
    Lv, Laishui
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024,
  • [2] An End-to-End Multiplex Graph Neural Network for Graph Representation Learning
    Liang, Yanyan
    Zhang, Yanfeng
    Gao, Dechao
    Xu, Qian
    [J]. IEEE ACCESS, 2021, 9 : 58861 - 58869
  • [3] Preserving node similarity adversarial learning graph representation with graph neural network
    Yang, Shangying
    Zhang, Yinglong
    Jiawei, E.
    Xia, Xuewen
    Xu, Xing
    [J]. ENGINEERING REPORTS, 2024,
  • [4] Graph Neural Network for representation learning of lung cancer
    Rukhma Aftab
    Yan Qiang
    Juanjuan Zhao
    Zia Urrehman
    Zijuan Zhao
    [J]. BMC Cancer, 23
  • [5] Graph Neural Network for representation learning of lung cancer
    Aftab, Rukhma
    Qiang, Yan
    Zhao, Juanjuan
    Urrehman, Zia
    Zhao, Zijuan
    [J]. BMC CANCER, 2023, 23 (01)
  • [6] Learning the Geodesic Embedding with Graph Neural Networks
    Pang, Bo
    Zheng, Zhongtian
    Wang, Guoping
    Wang, Peng-Shuai
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2023, 42 (06):
  • [8] Reverse Graph Learning for Graph Neural Network
    Peng, Liang
    Hu, Rongyao
    Kong, Fei
    Gan, Jiangzhang
    Mo, Yujie
    Shi, Xiaoshuang
    Zhu, Xiaofeng
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (04) : 4530 - 4541
  • [9] ISONN: Isomorphic Neural Network for Graph Representation Learning and Classification
    Meng, Lin
    Zhang, Jiawei
    [J]. arXiv, 2019,
  • [10] Graph representation learning in biological network
    Roy, Swarup
    Guzzi, Pietro Hiram
    Kalita, Jugal
    [J]. FRONTIERS IN BIOINFORMATICS, 2023, 3