Log-convexity and the overpartition function

被引:0
|
作者
Gargi Mukherjee
机构
[1] Johannes Kepler University,Institute for Algebra
来源
The Ramanujan Journal | 2023年 / 60卷
关键词
Log-convexity; Overpartitions; Primary 05A20; 11N37;
D O I
暂无
中图分类号
学科分类号
摘要
Let p¯(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{p}(n)$$\end{document} denote the overpartition function. In this paper, we obtain an inequality for the sequence Δ2logp¯(n-1)/(n-1)αn-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta ^{2}\log \ \root n-1 \of {\overline{p}(n-1)/(n-1)^{\alpha }}$$\end{document} which states that log(1+3π4n5/2-11+5αn11/4)<Δ2logp¯(n-1)/(n-1)αn-1<log(1+3π4n5/2)forn≥N(α),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}&\log \biggl (1+\frac{3\pi }{4n^{5/2}}-\frac{11+5\alpha }{n^{11/4}}\biggr )< \Delta ^{2} \log \ \root n-1 \of {\overline{p}(n-1)/(n-1)^{\alpha }}\\&< \log \biggl (1+\frac{3\pi }{4n^{5/2}}\biggr ) \ \ \text {for}\ n \ge N(\alpha ), \end{aligned}$$\end{document}where α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is a non-negative real number, N(α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N(\alpha )$$\end{document} is a positive integer depending on α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, and Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document} is the difference operator with respect to n. This inequality consequently implies log\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log $$\end{document}-convexity of {p¯(n)/nn}n≥19\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigl \{\root n \of {\overline{p}(n)/n}\bigr \}_{n \ge 19}$$\end{document} and {p¯(n)n}n≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigl \{\root n \of {\overline{p}(n)}\bigr \}_{n \ge 4}$$\end{document}. Moreover, it also establishes the asymptotic growth of Δ2logp¯(n-1)/(n-1)αn-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta ^{2} \log \ \root n-1 \of {\overline{p}(n-1)/(n-1)^{\alpha }}$$\end{document} by showing limn→∞Δ2logp¯(n)/nαn=3π4n5/2.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\underset{n \rightarrow \infty }{\lim } \Delta ^{2} \log \ \root n \of {\overline{p}(n)/n^{\alpha }} = \dfrac{3 \pi }{4 n^{5/2}}.$$\end{document}
引用
收藏
页码:517 / 531
页数:14
相关论文
共 50 条
  • [31] A combinatorial proof of the log-convexity of sequences in Riordan arrays
    Chen, Xi
    Wang, Yuzhenni
    Zheng, Sai-Nan
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 54 (01) : 39 - 48
  • [32] On the Log-convexity of two-parameter homogeneous functions
    Yang, Zhen-Hang
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2007, 10 (03): : 499 - 516
  • [33] A Note on Log-Convexity of q-Catalan Numbers
    Lynne M. Butler
    W. Patrick Flanigan
    Annals of Combinatorics, 2007, 11 : 369 - 373
  • [34] A combinatorial proof of the log-convexity of sequences in Riordan arrays
    Xi Chen
    Yuzhenni Wang
    Sai-Nan Zheng
    Journal of Algebraic Combinatorics, 2021, 54 : 39 - 48
  • [35] Log-concavity and log-convexity of series containing multiple Pochhammer symbols
    Karp, Dmitrii
    Zhang, Yi
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (01) : 458 - 486
  • [36] Log-concavity and log-convexity of series containing multiple Pochhammer symbols
    Dmitrii Karp
    Yi Zhang
    Fractional Calculus and Applied Analysis, 2024, 27 : 458 - 486
  • [37] Log-concavity of the overpartition function
    Engel, Benjamin
    RAMANUJAN JOURNAL, 2017, 43 (02): : 229 - 241
  • [38] ATOMIC-CHARGE LOG-CONVEXITY AND RADIAL EXPECTATION VALUES
    ANGULO, JC
    DEHESA, JS
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1991, 24 (13) : L299 - L306
  • [39] The asymptotic log-convexity of Apéry-like numbers
    Mao, Jianxi
    Pei, Yanni
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2023, 29 (08) : 799 - 813
  • [40] Log-Convexity of Rate Region in 802.11e WLANs
    Leith, Douglas J.
    Subramanian, Vijay G.
    Duffy, Ken R.
    IEEE COMMUNICATIONS LETTERS, 2010, 14 (01) : 57 - 59