Log-convexity and the overpartition function

被引:0
|
作者
Gargi Mukherjee
机构
[1] Johannes Kepler University,Institute for Algebra
来源
The Ramanujan Journal | 2023年 / 60卷
关键词
Log-convexity; Overpartitions; Primary 05A20; 11N37;
D O I
暂无
中图分类号
学科分类号
摘要
Let p¯(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{p}(n)$$\end{document} denote the overpartition function. In this paper, we obtain an inequality for the sequence Δ2logp¯(n-1)/(n-1)αn-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta ^{2}\log \ \root n-1 \of {\overline{p}(n-1)/(n-1)^{\alpha }}$$\end{document} which states that log(1+3π4n5/2-11+5αn11/4)<Δ2logp¯(n-1)/(n-1)αn-1<log(1+3π4n5/2)forn≥N(α),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}&\log \biggl (1+\frac{3\pi }{4n^{5/2}}-\frac{11+5\alpha }{n^{11/4}}\biggr )< \Delta ^{2} \log \ \root n-1 \of {\overline{p}(n-1)/(n-1)^{\alpha }}\\&< \log \biggl (1+\frac{3\pi }{4n^{5/2}}\biggr ) \ \ \text {for}\ n \ge N(\alpha ), \end{aligned}$$\end{document}where α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is a non-negative real number, N(α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N(\alpha )$$\end{document} is a positive integer depending on α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, and Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document} is the difference operator with respect to n. This inequality consequently implies log\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log $$\end{document}-convexity of {p¯(n)/nn}n≥19\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigl \{\root n \of {\overline{p}(n)/n}\bigr \}_{n \ge 19}$$\end{document} and {p¯(n)n}n≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigl \{\root n \of {\overline{p}(n)}\bigr \}_{n \ge 4}$$\end{document}. Moreover, it also establishes the asymptotic growth of Δ2logp¯(n-1)/(n-1)αn-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta ^{2} \log \ \root n-1 \of {\overline{p}(n-1)/(n-1)^{\alpha }}$$\end{document} by showing limn→∞Δ2logp¯(n)/nαn=3π4n5/2.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\underset{n \rightarrow \infty }{\lim } \Delta ^{2} \log \ \root n \of {\overline{p}(n)/n^{\alpha }} = \dfrac{3 \pi }{4 n^{5/2}}.$$\end{document}
引用
收藏
页码:517 / 531
页数:14
相关论文
共 50 条
  • [21] PRESERVATION OF LOG-CONCAVITY AND LOG-CONVEXITY UNDER OPERATORS
    Xia, Wanwan
    Mao, Tiantian
    Hu, Taizhong
    PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2021, 35 (03) : 451 - 464
  • [22] On Log-Convexity for Differences of Mixed Symmetric Means
    Anwar, M.
    Pecaric, J.
    MATHEMATICAL NOTES, 2010, 88 (5-6) : 776 - 784
  • [23] Strict log-convexity of the minimum power vector
    Stanczak, Slawomir
    Boche, Holger
    Wiczanowski, Marcin
    2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, : 2471 - +
  • [24] On log-convexity for differences of mixed symmetric means
    M. Anwar
    J. Pečarić
    Mathematical Notes, 2010, 88 : 776 - 784
  • [25] Preserving log-convexity for generalized Pascal triangles
    Ahmia, Moussa
    Belbachir, Hacene
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (02):
  • [26] Log-convexity and log-concavity of hypergeometric-like functions
    Karp, D.
    Sitnik, S. M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 364 (02) : 384 - 394
  • [27] Log-convexity and log-concavity for series in gamma ratios and applications
    Kalmykov, S. I.
    Karp, D. B.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 406 (02) : 400 - 418
  • [28] Log-convexity of Aigner-Catalan-Riordan numbers
    Wang, Yi
    Zhang, Zhi-Hai
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 463 : 45 - 55
  • [29] On the log-convexity of a Bernstein-like polynomials sequence
    Girjoaba, Adrian
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2024, 17 : 59 - 63
  • [30] A note on log-convexity of q-Catalan numbers
    Butler, Lynne M.
    Flanigan, W. Patrick
    ANNALS OF COMBINATORICS, 2007, 11 (3-4) : 369 - 373