Log-convexity and the overpartition function

被引:0
|
作者
Gargi Mukherjee
机构
[1] Johannes Kepler University,Institute for Algebra
来源
The Ramanujan Journal | 2023年 / 60卷
关键词
Log-convexity; Overpartitions; Primary 05A20; 11N37;
D O I
暂无
中图分类号
学科分类号
摘要
Let p¯(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{p}(n)$$\end{document} denote the overpartition function. In this paper, we obtain an inequality for the sequence Δ2logp¯(n-1)/(n-1)αn-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta ^{2}\log \ \root n-1 \of {\overline{p}(n-1)/(n-1)^{\alpha }}$$\end{document} which states that log(1+3π4n5/2-11+5αn11/4)<Δ2logp¯(n-1)/(n-1)αn-1<log(1+3π4n5/2)forn≥N(α),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}&\log \biggl (1+\frac{3\pi }{4n^{5/2}}-\frac{11+5\alpha }{n^{11/4}}\biggr )< \Delta ^{2} \log \ \root n-1 \of {\overline{p}(n-1)/(n-1)^{\alpha }}\\&< \log \biggl (1+\frac{3\pi }{4n^{5/2}}\biggr ) \ \ \text {for}\ n \ge N(\alpha ), \end{aligned}$$\end{document}where α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is a non-negative real number, N(α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N(\alpha )$$\end{document} is a positive integer depending on α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, and Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document} is the difference operator with respect to n. This inequality consequently implies log\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log $$\end{document}-convexity of {p¯(n)/nn}n≥19\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigl \{\root n \of {\overline{p}(n)/n}\bigr \}_{n \ge 19}$$\end{document} and {p¯(n)n}n≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigl \{\root n \of {\overline{p}(n)}\bigr \}_{n \ge 4}$$\end{document}. Moreover, it also establishes the asymptotic growth of Δ2logp¯(n-1)/(n-1)αn-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta ^{2} \log \ \root n-1 \of {\overline{p}(n-1)/(n-1)^{\alpha }}$$\end{document} by showing limn→∞Δ2logp¯(n)/nαn=3π4n5/2.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\underset{n \rightarrow \infty }{\lim } \Delta ^{2} \log \ \root n \of {\overline{p}(n)/n^{\alpha }} = \dfrac{3 \pi }{4 n^{5/2}}.$$\end{document}
引用
收藏
页码:517 / 531
页数:14
相关论文
共 50 条
  • [1] Log-convexity and the overpartition function
    Mukherjee, Gargi
    RAMANUJAN JOURNAL, 2023, 60 (02): : 517 - 531
  • [2] LOG-CONVEXITY OF GENERALIZED KANTOROVICH FUNCTION
    Tominaga, Masaru
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2022, 25 (03): : 647 - 657
  • [3] LOG-CONVEXITY OF COMBINATORIAL SEQUENCES FROM THEIR CONVEXITY
    Doslic, Tomislav
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2009, 3 (03): : 437 - 442
  • [4] On conditional independence and log-convexity
    Matus, Frantisek
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2012, 48 (04): : 1137 - 1147
  • [5] On the log-convexity of combinatorial sequences
    Liu, Lily L.
    Wang, Yi
    ADVANCES IN APPLIED MATHEMATICS, 2007, 39 (04) : 453 - 476
  • [6] THE LOG-CONVEXITY OF THE FUBINI NUMBERS
    Zou, Qing
    TRANSACTIONS ON COMBINATORICS, 2018, 7 (02) : 17 - 23
  • [7] A criterion for the log-convexity of combinatorial sequences
    Xia, Ernest X. W.
    Yao, Olivia X. M.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (04):
  • [8] Linear transformations preserving log-convexity
    Liu, Lily L.
    ARS COMBINATORIA, 2011, 100 : 473 - 483
  • [9] A note on log-convexity of power means
    Sandor, Jozsef
    ANNALES MATHEMATICAE ET INFORMATICAE, 2015, 45 : 107 - 110
  • [10] Seven (Lattice) Paths to Log-Convexity
    Tomislav Došlić
    Acta Applicandae Mathematicae, 2010, 110 : 1373 - 1392