Projections and Angle Sums of Belt Polytopes and Permutohedra

被引:0
|
作者
Thomas Godland
Zakhar Kabluchko
机构
[1] Westfälische Wilhelms-Universität Münster,Institut für Mathematische Stochastik
来源
Results in Mathematics | 2023年 / 78卷
关键词
Permutohedra; belt polytopes; -vector; projections; normal fans; polyhedral cones; Conic intrinsic volumes; Grassmann angles; Stirling numbers; Hyperplane arrangements; Weyl chambers; reflection arrangements; characteristic polynomials; zonotopes; Primary 52A22; 60D05; Secondary 11B73; 51F15; 52B05; 52B11; 52A55;
D O I
暂无
中图分类号
学科分类号
摘要
Let P⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P\subset \mathbb {R}^n$$\end{document} be a belt polytope, that is a polytope whose normal fan coincides with the fan of some hyperplane arrangement A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document}. Also, let G:Rn→Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G:\mathbb {R}^n\rightarrow \mathbb {R}^d$$\end{document} be a linear map of full rank whose kernel is in general position with respect to the faces of P. We derive a formula for the number of j-faces of the “projected” polytope GP in terms of the j-th level characteristic polynomial of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document}. In particular, we show that the face numbers of GP do not depend on the linear map G provided a general position assumption is satisfied. Furthermore, we derive formulas for the sum of the conic intrinsic volumes and Grassmann angles of the tangent cones of P at all of its j-faces. We apply these results to permutohedra of types A and B, which yields closed formulas for the face numbers of projected permutohedra and the generalized angle sums of permutohedra in terms of Stirling numbers of both kinds and their B-analogues.
引用
收藏
相关论文
共 50 条
  • [21] SECTIONS AND PROJECTIONS OF CONVEX POLYTOPES
    SHEPHARD, GC
    MATHEMATIKA, 1972, 19 (38) : 144 - 162
  • [22] CENTRAL AND PARALLEL PROJECTIONS OF POLYTOPES
    STURMFELS, B
    DISCRETE MATHEMATICS, 1986, 62 (03) : 315 - 318
  • [23] Approximating sums by integrals only: multiple sums and sums over lattice polytopes
    Pinelis, Iosif
    CONSTRUCTIVE MATHEMATICAL ANALYSIS, 2022, 5 (02): : 72 - 92
  • [24] ON SUMS OF NEWTON POLYTOPES FOR DISCRIMINANTS OF POLYNOMIALS
    Kobycheva V.S.
    Mikhalkin E.N.
    Stepanenko V.A.
    Journal of Mathematical Sciences, 2023, 271 (5) : 682 - 688
  • [25] Diameter, Decomposability, and Minkowski Sums of Polytopes
    Deza, Antoine
    Pournin, Lionel
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2019, 62 (04): : 741 - 755
  • [26] POLYHEDRAL GAUSS SUMS, AND POLYTOPES WITH SYMMETR
    Malikiosis, Romanos-Diogenes
    Robins, Sinai
    Zhang, Yichi
    JOURNAL OF COMPUTATIONAL GEOMETRY, 2016, 7 (01) : 149 - 170
  • [27] Sums of orthogonal projections
    Choi, Man-Duen
    Wu, Pei Yuan
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (02) : 384 - 404
  • [28] Projections of polytopes and the Generalized Baues Conjecture
    Rambau, J
    Ziegler, GM
    DISCRETE & COMPUTATIONAL GEOMETRY, 1996, 16 (03) : 215 - 237
  • [29] ON APPROXIMATION BY PROJECTIONS OF POLYTOPES WITH FEW FACETS
    Litvak, Alexander E.
    Rudelson, Mark
    Tomczak-Jaegermann, Nicole
    ISRAEL JOURNAL OF MATHEMATICS, 2014, 203 (01) : 141 - 160
  • [30] VOLUMES OF COMPLEMENTARY PROJECTIONS OF CONVEX POLYTOPES
    MCMULLEN, P
    MONATSHEFTE FUR MATHEMATIK, 1987, 104 (04): : 265 - 272