VOLUMES OF COMPLEMENTARY PROJECTIONS OF CONVEX POLYTOPES

被引:3
|
作者
MCMULLEN, P
机构
来源
MONATSHEFTE FUR MATHEMATIK | 1987年 / 104卷 / 04期
关键词
D O I
10.1007/BF01294650
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:265 / 272
页数:8
相关论文
共 50 条
  • [1] SECTIONS AND PROJECTIONS OF CONVEX POLYTOPES
    SHEPHARD, GC
    MATHEMATIKA, 1972, 19 (38) : 144 - 162
  • [2] PREASSIGNING THE SHAPE OF PROJECTIONS OF CONVEX POLYTOPES
    BARNETTE, DW
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1986, 42 (02) : 293 - 295
  • [3] Volumes and projections of convex bodies
    Gronchi, P
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1998, 1A : 121 - 124
  • [4] Ehrhart polynomials of convex polytopes with small volumes
    Hibi, Takayuki
    Higashitani, Akihiro
    Nagazawa, Yuuki
    EUROPEAN JOURNAL OF COMBINATORICS, 2011, 32 (02) : 226 - 232
  • [5] A Fast and Practical Method to Estimate Volumes of Convex Polytopes
    Ge, Cunjing
    Ma, Feifei
    FRONTIERS IN ALGORITHMICS (FAW 2015), 2015, 9130 : 52 - 65
  • [6] INTRINSIC VOLUMES OF RANDOM POLYTOPES WITH VERTICES ON THE BOUNDARY OF A CONVEX BODY
    Boeroeczky, Karoly J.
    Fodor, Ferenc
    Hug, Daniel
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (02) : 785 - 809
  • [7] INTRINSIC VOLUMES OF INSCRIBED RANDOM POLYTOPES IN SMOOTH CONVEX BODIES
    Barany, I.
    Fodor, F.
    Vigh, V.
    ADVANCES IN APPLIED PROBABILITY, 2010, 42 (03) : 605 - 619
  • [8] THE INFIMUM OF THE VOLUMES OF CONVEX POLYTOPES OF ANY GIVEN FACET AREAS IS 0
    Abrosimov, N. V.
    Makai, E., Jr.
    Mednykh, A. D.
    Nikonorov, Yu. G.
    Rote, G.
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2014, 51 (04) : 466 - 519
  • [9] VOLUMES OF CONVEX LATTICE POLYTOPES AND A QUESTION OF V. I. ARNOLD
    Barany, I.
    Yuan, L.
    ACTA MATHEMATICA HUNGARICA, 2014, 144 (01) : 119 - 131
  • [10] Volumes of Convex Lattice Polytopes and A Question of V. I. Arnold
    I. Bárány
    L. Yuan
    Acta Mathematica Hungarica, 2014, 144 : 119 - 131