THE INFIMUM OF THE VOLUMES OF CONVEX POLYTOPES OF ANY GIVEN FACET AREAS IS 0

被引:1
|
作者
Abrosimov, N. V. [1 ,2 ]
Makai, E., Jr. [3 ]
Mednykh, A. D. [1 ,2 ]
Nikonorov, Yu. G. [4 ]
Rote, G. [5 ]
机构
[1] Sobolev Inst Math, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
[3] Hungarian Acad Sci, A Renyi Inst Math, H-1364 Budapest, Hungary
[4] Russian Acad Sci, VSC, South Math Inst, Vladikavkaz 362027, Russia
[5] Free Univ Berlin, Inst Informat, D-14159 Berlin, Germany
关键词
convex polytopes; volume; Euclidean; spherical; hyperbolic spaces; MAXIMAL VOLUME;
D O I
10.1556/SScMath.51.2014.4.1292
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the theorem mentioned in the title for R-n where n >= 3. The case of the simplex was known previously. Also the case n = 2 was settled, but there the infimum was some well-defined function of the side lengths. We also consider the cases of spherical and hyperbolic n-spaces. There we give some necessary conditions for the existence of a convex polytope with given facet areas and some partial results about sufficient conditions for the existence of (convex) tetrahedra.
引用
收藏
页码:466 / 519
页数:54
相关论文
共 16 条
  • [1] VOLUMES OF COMPLEMENTARY PROJECTIONS OF CONVEX POLYTOPES
    MCMULLEN, P
    MONATSHEFTE FUR MATHEMATIK, 1987, 104 (04): : 265 - 272
  • [2] Ehrhart polynomials of convex polytopes with small volumes
    Hibi, Takayuki
    Higashitani, Akihiro
    Nagazawa, Yuuki
    EUROPEAN JOURNAL OF COMBINATORICS, 2011, 32 (02) : 226 - 232
  • [3] FACET OF REGULAR 0-1 POLYTOPES
    HAMMER, PL
    JOHNSON, EL
    PELED, UN
    MATHEMATICAL PROGRAMMING, 1975, 8 (02) : 179 - 206
  • [4] A Fast and Practical Method to Estimate Volumes of Convex Polytopes
    Ge, Cunjing
    Ma, Feifei
    FRONTIERS IN ALGORITHMICS (FAW 2015), 2015, 9130 : 52 - 65
  • [5] Expected intrinsic volumes and facet numbers of random beta-polytopes
    Kabluchko, Zakhar
    Temesvari, Daniel
    Thaele, Christoph
    MATHEMATISCHE NACHRICHTEN, 2019, 292 (01) : 79 - 105
  • [6] INTRINSIC VOLUMES OF RANDOM POLYTOPES WITH VERTICES ON THE BOUNDARY OF A CONVEX BODY
    Boeroeczky, Karoly J.
    Fodor, Ferenc
    Hug, Daniel
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (02) : 785 - 809
  • [7] INTRINSIC VOLUMES OF INSCRIBED RANDOM POLYTOPES IN SMOOTH CONVEX BODIES
    Barany, I.
    Fodor, F.
    Vigh, V.
    ADVANCES IN APPLIED PROBABILITY, 2010, 42 (03) : 605 - 619
  • [8] VOLUMES OF CONVEX LATTICE POLYTOPES AND A QUESTION OF V. I. ARNOLD
    Barany, I.
    Yuan, L.
    ACTA MATHEMATICA HUNGARICA, 2014, 144 (01) : 119 - 131
  • [9] Volumes of Convex Lattice Polytopes and A Question of V. I. Arnold
    I. Bárány
    L. Yuan
    Acta Mathematica Hungarica, 2014, 144 : 119 - 131
  • [10] Law of Sums of the Squares of Areas, Volumes and Hyper-Volumes of Regular Polytopes from Clifford Algebras
    Perelman, Carlos Castro
    Fang, Fang
    Irwin, Klee
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2013, 23 (04) : 815 - 824