Improved integer linear programming formulation for weak Roman domination problem

被引:0
|
作者
Marija Ivanović
机构
[1] Univeristy of Belgrade,Faculty of Mathematics
来源
Soft Computing | 2018年 / 22卷
关键词
Weak Roman domination in graphs; Combinatorial optimization; Integer linear programming;
D O I
暂无
中图分类号
学科分类号
摘要
Let f:V→{0,1,2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:V \rightarrow \{0,1,2\}$$\end{document} be a function, G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document} be a graph with a vertex set V and a set of edges E and let the weight of the vertex u∈V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u \in V$$\end{document} be defined by f(u). A vertex u with property f(u)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(u)=0$$\end{document} is considered to be defended with respect to the function f if it is adjacent to a vertex with positive weight. Further, the function f is called a weak Roman dominating function (WRDF) if for every vertex u with property f(u)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(u)=0$$\end{document} there exists at least one adjacent vertex v with positive weight such that the function f′:V→{0,1,2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f':V \rightarrow \{0,1,2\}$$\end{document} defined by f′(u)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f'(u)=1$$\end{document}, f′(v)=f(v)-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f'(v)=f(v)-1$$\end{document} and f′(w)=f(w)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f'(w)=f(w)$$\end{document}, w∈V\{u,v}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w \in V \setminus \{u,v\}$$\end{document} has no undefended vertices. In this paper, an optimization problem of finding the WRDF f such that ∑u∈Vf(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{u \in V}{f(u)}$$\end{document} is minimal, known as the weak Roman domination problem (WRDP), is considered. Therefore, a new integer linear programing (ILP) formulation is proposed and compared with the one known from the literature. Comparison between the new and the existing formulation is made through computational experiments on a grid, planar, net and randomly generated graphs known from the literature and up to 600 vertices. Tests were run using standard CPLEX and Gurobi optimization solvers. The obtained results demonstrate that the proposed new ILP formulation clearly outperforms the existing formulation in the sense of solutions’ quality and running times.
引用
收藏
页码:6583 / 6593
页数:10
相关论文
共 50 条
  • [41] An Integer Programming Formulation of Capacitated Facility Location Problem
    Alenezy, Eiman Jadaan
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2021, 16 (04): : 1087 - 1101
  • [42] Applications of an Improved PSO in Integer Linear Programming
    Wang, Ying
    [J]. Journal of Computers (Taiwan), 2021, 32 (06) : 98 - 106
  • [43] INTEGER FORMULATION OF PROGRAMMING PROBLEM WITH SEPARABLE TARGET FUNCTION
    STYRIKOV.RS
    [J]. MATEKON, 1974, 10 (03): : 76 - 80
  • [44] A NEW INTEGER PROGRAMMING FORMULATION FOR THE PERMUTATION FLOWSHOP PROBLEM
    FRIEZE, AM
    YADEGAR, J
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1989, 40 (01) : 90 - 98
  • [45] An Integer Programming Formulation of the Parsimonious Loss of Heterozygosity Problem
    Catanzaro, Daniele
    Labbe, Martine
    Halldorsson, Bjarni V.
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2013, 10 (06) : 1391 - 1402
  • [46] A compact integer programming formulation for the cutting stock problem
    Johnston, RE
    Sadinlija, E
    [J]. 56TH APPITA ANNUAL CONFERENCE, PROCEEDINGS, 2002, : 403 - 408
  • [47] An integer linear programming for container stowage problem
    Li, Feng
    Tian, Chunhua
    Cao, Rongzeng
    Ding, Wei
    [J]. COMPUTATIONAL SCIENCE - ICCS 2008, PT 1, 2008, 5101 : 853 - 862
  • [48] THE MIXED INTEGER LINEAR BILEVEL PROGRAMMING PROBLEM
    MOORE, JT
    BARD, JF
    [J]. OPERATIONS RESEARCH, 1990, 38 (05) : 911 - 921
  • [49] On the integer max-linear programming problem
    Butkovic, Peter
    MacCaig, Marie
    [J]. DISCRETE APPLIED MATHEMATICS, 2014, 162 : 128 - 141
  • [50] On the Bilevel Integer Linear Fractional Programming Problem
    Getinet Alemayehu
    S. R. Arora
    [J]. OPSEARCH, 2001, 38 (5) : 508 - 519