Improved integer linear programming formulation for weak Roman domination problem

被引:0
|
作者
Marija Ivanović
机构
[1] Univeristy of Belgrade,Faculty of Mathematics
来源
Soft Computing | 2018年 / 22卷
关键词
Weak Roman domination in graphs; Combinatorial optimization; Integer linear programming;
D O I
暂无
中图分类号
学科分类号
摘要
Let f:V→{0,1,2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:V \rightarrow \{0,1,2\}$$\end{document} be a function, G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document} be a graph with a vertex set V and a set of edges E and let the weight of the vertex u∈V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u \in V$$\end{document} be defined by f(u). A vertex u with property f(u)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(u)=0$$\end{document} is considered to be defended with respect to the function f if it is adjacent to a vertex with positive weight. Further, the function f is called a weak Roman dominating function (WRDF) if for every vertex u with property f(u)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(u)=0$$\end{document} there exists at least one adjacent vertex v with positive weight such that the function f′:V→{0,1,2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f':V \rightarrow \{0,1,2\}$$\end{document} defined by f′(u)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f'(u)=1$$\end{document}, f′(v)=f(v)-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f'(v)=f(v)-1$$\end{document} and f′(w)=f(w)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f'(w)=f(w)$$\end{document}, w∈V\{u,v}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w \in V \setminus \{u,v\}$$\end{document} has no undefended vertices. In this paper, an optimization problem of finding the WRDF f such that ∑u∈Vf(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{u \in V}{f(u)}$$\end{document} is minimal, known as the weak Roman domination problem (WRDP), is considered. Therefore, a new integer linear programing (ILP) formulation is proposed and compared with the one known from the literature. Comparison between the new and the existing formulation is made through computational experiments on a grid, planar, net and randomly generated graphs known from the literature and up to 600 vertices. Tests were run using standard CPLEX and Gurobi optimization solvers. The obtained results demonstrate that the proposed new ILP formulation clearly outperforms the existing formulation in the sense of solutions’ quality and running times.
引用
收藏
页码:6583 / 6593
页数:10
相关论文
共 50 条
  • [21] Integer linear programming formulation of the vehicle positioning problem in automated manufacturing systems
    Montoya-Torres, Jairo R.
    Onate Bello, Gonzalo
    [J]. JOURNAL OF INTELLIGENT MANUFACTURING, 2011, 22 (04) : 545 - 552
  • [22] A MIXED INTEGER LINEAR PROGRAMMING FORMULATION FOR THE SPARSE RECOVERY PROBLEM IN COMPRESSED SENSING
    Karahanoglu, N. Burak
    Erdogan, Hakan
    Birbil, S. Ilker
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 5870 - 5874
  • [23] Mixed integer linear programming formulation for K-means clustering problem
    Agoston, Kolos Cs.
    E-Nagy, Marianna
    [J]. CENTRAL EUROPEAN JOURNAL OF OPERATIONS RESEARCH, 2024, 32 (01) : 11 - 27
  • [24] Rectangle blanket problem: Binary integer linear programming formulation and solution algorithms
    Demiroz, Baris Evrim
    Altinel, I. Kuban
    Akarun, Lale
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2019, 277 (01) : 62 - 83
  • [25] AN INTEGER LINEAR PROGRAMMING FORMULATION AND GENETIC ALGORITHM FOR THE MAXIMUM SET SPLITTING PROBLEM
    Lazovic, Bojana
    Maric, Miroslav
    Filipovic, Vladimir
    Savic, Aleksandar
    [J]. PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2012, 92 (106): : 25 - 34
  • [26] A New Mixed Integer Linear Programming Formulation for Dynamic Facility Layout Problem
    Matai, R.
    Singh, S. P.
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEE IEEM21), 2021, : 834 - 838
  • [27] Elevator dispatching problem: a mixed integer linear programming formulation and polyhedral results
    Mirko Ruokokoski
    Harri Ehtamo
    Panos M. Pardalos
    [J]. Journal of Combinatorial Optimization, 2015, 29 : 750 - 780
  • [28] Integer linear programming formulation of the vehicle positioning problem in automated manufacturing systems
    Jairo R. Montoya-Torres
    Gonzalo Oñate Bello
    [J]. Journal of Intelligent Manufacturing, 2011, 22 : 545 - 552
  • [29] Gamma deployment problem in grids: hardness and new integer linear programming formulation
    Faraj, Marcelo Fonseca
    Urrutia, Sebastian
    Sarubbi, Joao F. M.
    [J]. INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2020, 27 (06) : 2740 - 2759
  • [30] Mixed integer linear programming formulation for K-means clustering problem
    Kolos Cs. Ágoston
    Marianna E.-Nagy
    [J]. Central European Journal of Operations Research, 2024, 32 : 11 - 27