Comparative Study of Response Surface Methodology and Adaptive Neuro-Fuzzy Inference System for Removal of 6-APA

被引:0
|
作者
Nona Soleimanpour Moghadam
Amirreza Azadmehr
Ardeshir Hezarkhani
机构
[1] Amirkabir University of Technology,Department of Mining and Metallurgical Engineering
关键词
Response surface methodology (RSM); Adaptive neuro-fuzzy inference system (ANFIS); Hospital wastewater; Aminopenicillanic acid (6-APA); Pollutant removal; Vermiculite;
D O I
暂无
中图分类号
学科分类号
摘要
The antibiotic-contaminated water treatment is an important step for pollutant reduction and the promotion of water environment quality. Uncertainty in wastewater treatment technology, fluctuations in effluent water quality, and operation costs cause an emerging issue to develop materials effective for the removal of antibiotics. The environment-friendly clay such as vermiculite could be potentially promising candidates for removing 6-APA (6-aminopenicillanic) from pharmaceutical effluent. Antibiotic removal was achieved by using an eco-friendly, time-saving, powerful, and easy applying synthesis method via tetraethoxysilane (Si). Expert systems are widely powerful tools for minimizing the complexities and complications in wastewater treatment. Response surface methodology (RSM) and adaptive neuro-fuzzy inference system (ANFIS) models were used to develop systematically predicting interactions of synthesis conditions on 6-APA adsorption capacity and optimize the best amount of compound. The three parameters of the amount of adsorbent (weight.), initial concentration (mg/mL), and reaction time (min) are selected as input and the adsorption capacity (mg/g) were computed as the output of the models. The effect of process variables investigated by RSM through central composite design matrix and the results compared with ANFIS model. The maximum amount of adsorption capacity predicted by RSM for VMT and VMT-Si were 162.5 and 179.8 mg/g, respectively. The suggested models were successfully validated with the acceptable confidence levels 0.99 and 0.97, for VMT and VMT-Si using RSM and 0.99 and 0.99 by ANFIS. ANFIS model demonstrated higher predictive capability than RSM model based on the good agreement in predictable dataset to experimental data.
引用
收藏
页码:1645 / 1656
页数:11
相关论文
共 50 条
  • [41] Adaptive Neuro-fuzzy Inference system into Induction Motor : Estimation
    Boussada, Zina
    Ben Hamed, Mouna
    Sbita, Lassaad
    2014 INTERNATIONAL CONFERENCE ON ELECTRICAL SCIENCES AND TECHNOLOGIES IN MAGHREB (CISTEM), 2014,
  • [42] Geoacoustic inversion using adaptive neuro-fuzzy inference system
    Satyanarayana Yegireddi
    Arvind Kumar
    Computational Geosciences, 2008, 12 : 513 - 523
  • [43] Adaptive Neuro-Fuzzy Inference System for Binaural Source Localisation
    Scerri, Jeremy
    Scicluna, Kris
    Seguna, Clive
    Zammit, Joseph A.
    2018 INTERNATIONAL CONFERENCE ON RECENT INNOVATIONS IN ELECTRICAL, ELECTRONICS & COMMUNICATION ENGINEERING (ICRIEECE 2018), 2018, : 2441 - 2443
  • [44] Realization of an improved adaptive neuro-fuzzy inference system in DSP
    Wu, Xingxing
    Zhu, Xilin
    Li, Xiaomei
    Yu, Haocheng
    ADVANCES IN NEURAL NETWORKS - ISNN 2007, PT 2, PROCEEDINGS, 2007, 4492 : 170 - +
  • [45] Adaptive Neuro-Fuzzy Inference System for Classification of ECG Signal
    Muthuvel, K.
    Suresh, L. Padma
    PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON CIRCUITS, POWER AND COMPUTING TECHNOLOGIES (ICCPCT 2013), 2013, : 1162 - 1166
  • [46] Dynamic modelling of PEMFC by adaptive neuro-fuzzy inference system
    Karimi, Milad
    Rezazadeh, Alireza
    INTERNATIONAL JOURNAL OF ELECTRIC AND HYBRID VEHICLES, 2016, 8 (04) : 289 - 301
  • [47] The Application of Adaptive Neuro-Fuzzy Inference System in Lithology Identification
    Jia, HuanJun
    2012 IEEE FIFTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2012, : 966 - 968
  • [48] Adaptive Neuro-Fuzzy Inference System for Assessing the Maintainability of the Software
    Therasa, P. R.
    Vivekanandan, P.
    2017 NINTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING (ICOAC), 2017, : 204 - 212
  • [49] Image Interpolation Based on Adaptive Neuro-Fuzzy Inference System
    Maleki, Shiva Aghapour
    Tinati, Mohammad Ali
    Tazehkand, Behzad Mozaffari
    2019 3RD INTERNATIONAL CONFERENCE ON IMAGING, SIGNAL PROCESSING AND COMMUNICATION (ICISPC), 2019, : 78 - 84
  • [50] Adaptive neuro-fuzzy inference system for analysis of Doppler signals
    Ubeyli, Elif Derya
    2006 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vols 1-15, 2006, : 1082 - 1085