Comparative Study of Response Surface Methodology and Adaptive Neuro-Fuzzy Inference System for Removal of 6-APA

被引:0
|
作者
Nona Soleimanpour Moghadam
Amirreza Azadmehr
Ardeshir Hezarkhani
机构
[1] Amirkabir University of Technology,Department of Mining and Metallurgical Engineering
关键词
Response surface methodology (RSM); Adaptive neuro-fuzzy inference system (ANFIS); Hospital wastewater; Aminopenicillanic acid (6-APA); Pollutant removal; Vermiculite;
D O I
暂无
中图分类号
学科分类号
摘要
The antibiotic-contaminated water treatment is an important step for pollutant reduction and the promotion of water environment quality. Uncertainty in wastewater treatment technology, fluctuations in effluent water quality, and operation costs cause an emerging issue to develop materials effective for the removal of antibiotics. The environment-friendly clay such as vermiculite could be potentially promising candidates for removing 6-APA (6-aminopenicillanic) from pharmaceutical effluent. Antibiotic removal was achieved by using an eco-friendly, time-saving, powerful, and easy applying synthesis method via tetraethoxysilane (Si). Expert systems are widely powerful tools for minimizing the complexities and complications in wastewater treatment. Response surface methodology (RSM) and adaptive neuro-fuzzy inference system (ANFIS) models were used to develop systematically predicting interactions of synthesis conditions on 6-APA adsorption capacity and optimize the best amount of compound. The three parameters of the amount of adsorbent (weight.), initial concentration (mg/mL), and reaction time (min) are selected as input and the adsorption capacity (mg/g) were computed as the output of the models. The effect of process variables investigated by RSM through central composite design matrix and the results compared with ANFIS model. The maximum amount of adsorption capacity predicted by RSM for VMT and VMT-Si were 162.5 and 179.8 mg/g, respectively. The suggested models were successfully validated with the acceptable confidence levels 0.99 and 0.97, for VMT and VMT-Si using RSM and 0.99 and 0.99 by ANFIS. ANFIS model demonstrated higher predictive capability than RSM model based on the good agreement in predictable dataset to experimental data.
引用
收藏
页码:1645 / 1656
页数:11
相关论文
共 50 条
  • [21] Adaptive Neuro-Fuzzy Inference System for drought forecasting
    Bacanli, Ulker Guner
    Firat, Mahmut
    Dikbas, Fatih
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2009, 23 (08) : 1143 - 1154
  • [22] ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM FOR END MILLING
    Markopoulos, Angelos P.
    Georgiopoulos, Sotirios
    Kinigalakis, Myron
    Manolakos, Dimitrios E.
    JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2016, 11 (09) : 1234 - 1248
  • [23] Adaptive neuro-fuzzy inference system for modelling and control
    Amaral, TGB
    Crisóstomo, MM
    Pires, VF
    2002 FIRST INTERNATIONAL IEEE SYMPOSIUM INTELLIGENT SYSTEMS, VOL 1, PROCEEDINGS, 2002, : 67 - 72
  • [24] Adaptive Neuro-Fuzzy Inference System for drought forecasting
    Ulker Guner Bacanli
    Mahmut Firat
    Fatih Dikbas
    Stochastic Environmental Research and Risk Assessment, 2009, 23 : 1143 - 1154
  • [25] Adaptive Neuro-Fuzzy Inference System for Financial Evaluation
    Orhei, Dragomir
    VISION 2020: SUSTAINABLE GROWTH, ECONOMIC DEVELOPMENT, AND GLOBAL COMPETITIVENESS, VOLS 1-5, 2014, : 241 - 245
  • [26] Adaptive Neuro-Fuzzy Inference System for Classification of Texts
    Kamil, Aida-zade
    Rustamov, Samir
    Clements, Mark A.
    Mustafayev, Elshan
    RECENT DEVELOPMENTS AND THE NEW DIRECTION IN SOFT-COMPUTING FOUNDATIONS AND APPLICATIONS, 2018, 361 : 63 - 70
  • [27] Edge Detection by Adaptive Neuro-Fuzzy Inference System
    Zhang, Lei
    Xiao, Mei
    Ma, Jian
    Song, Hongxun
    PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOLS 1-9, 2009, : 1774 - 1777
  • [28] Hysteresis Modeling with Adaptive Neuro-Fuzzy Inference System
    Mordjaoui, M.
    Chabane, M.
    Boudjema, B.
    Daira, R.
    FERROELECTRICS, 2008, 372 : 54 - 65
  • [29] An application of the adaptive neuro-fuzzy inference system for prediction of surface roughness in turning
    Roy, Shibendu
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2007, 28 (04) : 281 - 288
  • [30] Modeling and Optimization of Hexavalent Chromium Adsorption by Activated Eucalyptus Biochar Using Response Surface Methodology and Adaptive Neuro-Fuzzy Inference System
    Yusuff, Adeyinka Sikiru
    Ishola, Niyi Babatunde
    Gbadamosi, Afeez Olayinka
    Epelle, Emmanuel I.
    ENVIRONMENTS, 2023, 10 (03)