A New Proof of Spinks' Theorem

被引:0
|
作者
Karin Cvetko-Vah
机构
[1] Department of Mathematics,
[2] Faculty for Mathematics and Physics,undefined
[3] University of Ljubljana,undefined
[4] Jadranska 19,undefined
[5] 1000 Ljubljana,undefined
来源
Semigroup Forum | 2006年 / 73卷
关键词
Semigroup Forum; Lattice Image; Decomposition Theorem; Distributive Identity; Automate Deduction;
D O I
暂无
中图分类号
学科分类号
摘要
Skew lattices form a class of non-commutative lattices. Spinks' Theorem [Matthew Spinks, On middle distributivity for skew lattices, Semigroup Forum 61 (2000), 341-345] states that for symmetric skew lattices the two distributive identities \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x\wedge (y\vee z)\wedge x=(x\wedge y\wedge x)\vee (x\wedge z\wedge x)$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x\vee (y\wedge z)\vee x=(x\vee y\vee x)\wedge (x\vee z\vee x)$\end{document} are equivalent. Up to now only computer proofs of this theorem have been known. In the present paper the author presents a direct proof of Spinks' Theorem. In addition, a new result is proved showing that the assumption of symmetry can be omitted for cancellative skew lattices.
引用
下载
收藏
页码:267 / 272
页数:5
相关论文
共 50 条