共 50 条
A New Proof of Spinks' Theorem
被引:0
|作者:
Karin Cvetko-Vah
机构:
[1] Department of Mathematics,
[2] Faculty for Mathematics and Physics,undefined
[3] University of Ljubljana,undefined
[4] Jadranska 19,undefined
[5] 1000 Ljubljana,undefined
来源:
关键词:
Semigroup Forum;
Lattice Image;
Decomposition Theorem;
Distributive Identity;
Automate Deduction;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Skew lattices form a class of non-commutative lattices. Spinks' Theorem [Matthew Spinks, On middle distributivity for skew lattices, Semigroup Forum 61 (2000), 341-345] states that for symmetric skew lattices the two distributive identities \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$x\wedge (y\vee z)\wedge x=(x\wedge y\wedge x)\vee (x\wedge z\wedge x)$\end{document} and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$x\vee (y\wedge z)\vee x=(x\vee y\vee x)\wedge (x\vee z\vee x)$\end{document} are equivalent. Up to now only computer proofs of this theorem have been known. In the present paper the author presents a direct proof of Spinks' Theorem. In addition, a new result is proved showing that the assumption of symmetry can be omitted for cancellative skew lattices.
引用
下载
收藏
页码:267 / 272
页数:5
相关论文