Skew lattices form a class of non-commutative lattices. Spinks' Theorem [Matthew Spinks, On middle distributivity for skew lattices, Semigroup Forum 61 (2000), 341-345] states that for symmetric skew lattices the two distributive identities \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$x\wedge (y\vee z)\wedge x=(x\wedge y\wedge x)\vee (x\wedge z\wedge x)$\end{document} and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$x\vee (y\wedge z)\vee x=(x\vee y\vee x)\wedge (x\vee z\vee x)$\end{document} are equivalent. Up to now only computer proofs of this theorem have been known. In the present paper the author presents a direct proof of Spinks' Theorem. In addition, a new result is proved showing that the assumption of symmetry can be omitted for cancellative skew lattices.
机构:
Lycee Profess Hotelier La Closerie, 10 Rue Pierre Loti,BP 4, F-22410 St Quay Portrieux, FranceLycee Profess Hotelier La Closerie, 10 Rue Pierre Loti,BP 4, F-22410 St Quay Portrieux, France
Laugier, Alexandre
Saikia, Manjil P.
论文数: 0|引用数: 0|
h-index: 0|
机构:
Tezpur Univ, Dept Math Sci, Sonitpur 784028, Assam, IndiaLycee Profess Hotelier La Closerie, 10 Rue Pierre Loti,BP 4, F-22410 St Quay Portrieux, France