Whitney extension theorem in the ultradifferentiable setting;
Beurling type classes;
controlled loss of regularity;
properties of weight functions;
26E10;
30D60;
46E10;
58C25;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We prove a version of Whitney’s extension theorem in the ultradifferentiable Beurling setting with controlled loss of regularity. As a by-product we show the existence of continuous linear extension operators on certain spaces of Whitney ultrajets on arbitrary closed sets in Rn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {R}^n$$\end{document}.