On the extension of Whitney ultrajets, II

被引:19
|
作者
Rainer, Armin [1 ]
Schindl, Gerhard [2 ]
机构
[1] Univ Wien, Fak Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Univ Valladolid, Fac Ciencias, Dept Algebra Anal Matemat Geometr & Topol, Paseo Belen 7, Valladolid 47011, Spain
基金
奥地利科学基金会;
关键词
Whitney extension theorem in the ultradifferentiable setting; Roumieu type classes; controlled loss of regularity; properties of weight functions; ULTRADIFFERENTIABLE FUNCTIONS; THEOREM;
D O I
10.4064/sm180903-12-11
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize the validity of the Whitney extension theorem in the ultradifferentiable Roumieu setting with controlled loss of regularity. Specifically, we show that in the main Theorem 1.3 of [Studia Math. 245 (2019), 255-287] condition (1.3) can be dropped. Moreover, we clarify some questions that remained open there.
引用
收藏
页码:283 / 295
页数:13
相关论文
共 50 条
  • [1] On the extension of Whitney ultrajets
    Rainer, Armin
    Schindl, Gerhard
    STUDIA MATHEMATICA, 2019, 245 (03) : 255 - 287
  • [2] On the Extension of Whitney Ultrajets of Beurling Type
    Rainer, Armin
    RESULTS IN MATHEMATICS, 2021, 76 (01)
  • [3] On the Extension of Whitney Ultrajets of Beurling Type
    Armin Rainer
    Results in Mathematics, 2021, 76
  • [4] Extension of a theorem of Whitney
    Kainen, Paul C.
    Overbay, Shannon
    APPLIED MATHEMATICS LETTERS, 2007, 20 (07) : 835 - 837
  • [5] Extension of Whitney jets of controlled growth
    Rainer, Armin
    Schindl, Gerhard
    MATHEMATISCHE NACHRICHTEN, 2017, 290 (14-15) : 2356 - 2374
  • [6] Formal Extension of the Whitney Functor and Duality
    Martins, Ana Rita
    Fernandes, Teresa Monteiro
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2011, 126 : 127 - 149
  • [7] Whitney's extension problem for Cm
    Fefferman, Charles
    ANNALS OF MATHEMATICS, 2006, 164 (01) : 313 - 359
  • [8] The Whitney extension theorem in high dimensions
    Chang, Alan
    REVISTA MATEMATICA IBEROAMERICANA, 2017, 33 (02) : 623 - 632
  • [9] A sharp form of Whitney's extension theorem
    Fefferman, CL
    ANNALS OF MATHEMATICS, 2005, 161 (01) : 509 - 577
  • [10] Semialgebraic version of Whitney’s extension theorem
    Beata Kocel-Cynk
    Wiesław Pawłucki
    Anna Valette
    Archiv der Mathematik, 2019, 113 : 59 - 62