On the Extension of Whitney Ultrajets of Beurling Type

被引:0
|
作者
Armin Rainer
机构
[1] Universität Wien,Fakultät für Mathematik
来源
Results in Mathematics | 2021年 / 76卷
关键词
Whitney extension theorem in the ultradifferentiable setting; Beurling type classes; controlled loss of regularity; properties of weight functions; 26E10; 30D60; 46E10; 58C25;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a version of Whitney’s extension theorem in the ultradifferentiable Beurling setting with controlled loss of regularity. As a by-product we show the existence of continuous linear extension operators on certain spaces of Whitney ultrajets on arbitrary closed sets in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^n$$\end{document}.
引用
收藏
相关论文
共 50 条