K-theory for the simple C∗-algebra of the Fibonacci-Dyck shift

被引:0
|
作者
Matsumoto K. [1 ]
机构
[1] Department of Mathematics, Joetsu University of Education, Joetsu
来源
Acta Scientiarum Mathematicarum | 2017年 / 83卷 / 1-2期
基金
日本学术振兴会;
关键词
C[!sup]∗[!/sup]-algebra; Cuntz-Krieger algebra; Dyck shift; Fibonacci-Dyck shift; K-theory; Subshift; λ-graph system;
D O I
10.14232/actasm-015-323-0
中图分类号
学科分类号
摘要
The Fibonacci-Dyck shift DF is a subsystem of the Dyck shift D2 constrained by the Fibonacci matrix F = [1110]. Let £Ch(Df) be a certain λ-graph system presenting the subshift DF, which is a labeled Bratteli diagram with some additional structure. The C∗-algebra O£ Ch(Df) associated with £Ch(Df) is simple purely infinite and generated by four partial isometries with some operator relations. We will compute the K-theory of the C∗-algebra. As a result, the C∗-algebra is not stably isomorphic to any Cuntz-Krieger algebra nor to the C∗-algebras O£ Ch(DN) OF the Dyck shifts DN. We will also know that the subshift DF is not flow equivalent to any of Dyck shifts DN, 1 < N ϵ ℕ. © Bolyai Institute, University of Szeged.
引用
收藏
页码:177 / 200
页数:23
相关论文
共 50 条