K-theory and the anti-automorphism of the steenrod algebra

被引:3
|
作者
Crabb, MC
Crossley, MD
Hubbuck, JR
机构
关键词
D O I
10.1090/S0002-9939-96-03388-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give simple proofs of some relations in the Steenrod algebra involving the powers P-i and their duals P-chi(i) and show how these relations arise from K-theory.
引用
收藏
页码:2275 / 2281
页数:7
相关论文
共 50 条
  • [1] More on the anti-automorphism of the Steenrod algebra
    Giambalvo, Vince
    Miller, Haynes R.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2011, 11 (05): : 2579 - 2585
  • [2] ON THE STEENROD ALGEBRA OF MORAVA K-THEORY
    YAGITA, N
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1980, 22 (DEC): : 423 - 438
  • [3] CONSTRUCTING AN AUTOMORPHISM FROM AN ANTI-AUTOMORPHISM
    AYOUB, C
    CANADIAN MATHEMATICAL BULLETIN, 1968, 11 (03): : 367 - &
  • [4] The asymmetry of an anti-automorphism
    Cortella, A
    Tignol, JP
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2002, 167 (2-3) : 175 - 193
  • [5] DIVISION RINGS WITH ANTI-AUTOMORPHISM
    IKEDA, M
    JOURNAL OF ALGEBRA, 1971, 19 (04) : 517 - &
  • [6] K-theory of Algebra
    Guo, Xianzhou
    Zhang, Xiangmei
    Gao, Xinjie
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPPLICATIONS, VOL 1, 2009, : 200 - 203
  • [7] AN AUTOMORPHISM OF ORTHOGONAL ALGEBRAIC K-THEORY
    FIEDOROWICZ, Z
    PRIDDY, S
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1982, 26 (03) : 281 - 292
  • [8] Division algebras with an anti-automorphism but with no involution
    Morandi, PJ
    Sethuraman, BA
    Tignol, JP
    ADVANCES IN GEOMETRY, 2005, 5 (03) : 485 - 495
  • [9] Segal K-theory of vector spaces with an automorphism
    Bianchi, Andrea
    Kranhold, Florian
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2025, 2025 (05)
  • [10] On the K-theory of matrix algebra bundles
    Ershov, AV
    RUSSIAN MATHEMATICAL SURVEYS, 2000, 55 (02) : 336 - 337