This paper considers Stokes and Newton iterations to solve stationary Navier- Stokes equations based on the finite element discretization. We obtain new sufficient conditions of stability and convergence for the two iterations. Specifically, when 0 < σ = \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\tfrac{{N||f||_{ - 1} }}
{{\nu ^2 }}$\end{document}≤\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\tfrac{1}{{\sqrt 2 + 1}}$$\end{document}, the Stokes iteration is stable and convergent, where N is defined in the paper. When 0 < σ ≤ 5/11, the Newton iteration is stable and convergent. This work gives a more accurate admissible range of data for stability and convergence of the two schemes, which improves the previous results. A numerical test is given to verify the theory.
机构:
Inst Appl Phys & Computat Math, Beijing, Peoples R ChinaInst Appl Phys & Computat Math, Beijing, Peoples R China
Ju, Qiangchang
Wang, Zhao
论文数: 0引用数: 0
h-index: 0
机构:
Inst Appl Phys & Computat Math, Beijing, Peoples R China
China Acad Engn Phys, Grad Sch, Beijing, Peoples R ChinaInst Appl Phys & Computat Math, Beijing, Peoples R China
机构:
Xi An Jiao Tong Univ, Fac Sci, Xian 710049, Shanxi, Peoples R China
Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R ChinaXi An Jiao Tong Univ, Fac Sci, Xian 710049, Shanxi, Peoples R China
Feng, Xinlong
He, Yinnian
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Fac Sci, Xian 710049, Shanxi, Peoples R ChinaXi An Jiao Tong Univ, Fac Sci, Xian 710049, Shanxi, Peoples R China
机构:
Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
North China Univ Water Resources & Elect Power, Coll Math & Informat Sci, Zhengzhou 450046, Peoples R ChinaInst Appl Phys & Computat Math, Beijing 100088, Peoples R China
Yang JianWei
Wang Shu
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Technol, Coll Appl Sci, Beijing 100022, Peoples R ChinaInst Appl Phys & Computat Math, Beijing 100088, Peoples R China