New conditions of stability and convergence of Stokes and Newton iterations for Navier-Stokes equations

被引:0
|
作者
Guodong Zhang
Xiaojing Dong
Yongzheng An
Hong Liu
机构
[1] Xi’an Jiaotong University,School of Mathematics and Statistics
来源
关键词
Navier-Stokes equation; Stokes iteration; Newton iteration; stability; convergence; O242.21; O241.82; O351.3; 65N30; 76D05; 76M10;
D O I
暂无
中图分类号
学科分类号
摘要
This paper considers Stokes and Newton iterations to solve stationary Navier- Stokes equations based on the finite element discretization. We obtain new sufficient conditions of stability and convergence for the two iterations. Specifically, when 0 < σ = \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tfrac{{N||f||_{ - 1} }} {{\nu ^2 }}$\end{document}≤\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tfrac{1}{{\sqrt 2 + 1}}$$\end{document}, the Stokes iteration is stable and convergent, where N is defined in the paper. When 0 < σ ≤ 5/11, the Newton iteration is stable and convergent. This work gives a more accurate admissible range of data for stability and convergence of the two schemes, which improves the previous results. A numerical test is given to verify the theory.
引用
收藏
页码:863 / 872
页数:9
相关论文
共 50 条