Phylogenetic trees and Euclidean embeddings

被引:0
|
作者
Mark Layer
John A. Rhodes
机构
[1] University of Alaska Fairbanks,Department of Mathematics and Statistics
来源
Journal of Mathematical Biology | 2017年 / 74卷
关键词
Phylogenetic trees; Distance methods; Multidimensional scaling; Neighbor joining; 92D15; 92B10; 51K99;
D O I
暂无
中图分类号
学科分类号
摘要
It was recently observed by de Vienne et al. (Syst Biol 60(6):826–832, 2011) that a simple square root transformation of distances between taxa on a phylogenetic tree allowed for an embedding of the taxa into Euclidean space. While the justification for this was based on a diffusion model of continuous character evolution along the tree, here we give a direct and elementary explanation for it that provides substantial additional insight. We use this embedding to reinterpret the differences between the NJ and BIONJ tree building algorithms, providing one illustration of how this embedding reflects tree structures in data.
引用
收藏
页码:99 / 111
页数:12
相关论文
共 50 条
  • [41] Least distortion Euclidean embeddings of flat tori
    Moustrou, Philippe
    Vallentin, Frank
    PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON SYMBOLIC & ALGEBRAIC COMPUTATION, ISSAC 2023, 2023, : 13 - 23
  • [42] Tangent bundle embeddings of manifolds in Euclidean space
    Ghomi, M
    COMMENTARII MATHEMATICI HELVETICI, 2006, 81 (01) : 259 - 270
  • [43] Pathwidth, trees, and random embeddings
    Lee, James R.
    Sidiropoulos, Anastasios
    COMBINATORICA, 2013, 33 (03) : 349 - 374
  • [44] Perfect trees and elementary embeddings
    Friedman, Sy-David
    Thompson, Katherine
    JOURNAL OF SYMBOLIC LOGIC, 2008, 73 (03) : 906 - 918
  • [45] QUASI-SYMMETRIC EMBEDDINGS IN EUCLIDEAN SPACES
    VAISALA, J
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 264 (01) : 191 - 204
  • [46] Bipartite embeddings of trees in the plane
    Abellanas, M
    García, J
    Hernández, G
    Noy, M
    Ramos, P
    DISCRETE APPLIED MATHEMATICS, 1999, 93 (2-3) : 141 - 148
  • [47] Self-embeddings of trees
    Hamann, Matthias
    DISCRETE MATHEMATICS, 2019, 342 (12)
  • [48] EFFICIENT EMBEDDINGS OF TREES IN HYPERCUBES
    BHATT, SN
    CHUNG, FRK
    LEIGHTON, FT
    ROSENBERG, AL
    SIAM JOURNAL ON COMPUTING, 1992, 21 (01) : 151 - 162
  • [49] Euclidean Greedy Drawings of Trees
    Martin Nöllenburg
    Roman Prutkin
    Discrete & Computational Geometry, 2017, 58 : 543 - 579
  • [50] Approximate Euclidean Steiner Trees
    Charl Ras
    Konrad Swanepoel
    Doreen Anne Thomas
    Journal of Optimization Theory and Applications, 2017, 172 : 845 - 873