Phylogenetic trees and Euclidean embeddings

被引:0
|
作者
Mark Layer
John A. Rhodes
机构
[1] University of Alaska Fairbanks,Department of Mathematics and Statistics
来源
Journal of Mathematical Biology | 2017年 / 74卷
关键词
Phylogenetic trees; Distance methods; Multidimensional scaling; Neighbor joining; 92D15; 92B10; 51K99;
D O I
暂无
中图分类号
学科分类号
摘要
It was recently observed by de Vienne et al. (Syst Biol 60(6):826–832, 2011) that a simple square root transformation of distances between taxa on a phylogenetic tree allowed for an embedding of the taxa into Euclidean space. While the justification for this was based on a diffusion model of continuous character evolution along the tree, here we give a direct and elementary explanation for it that provides substantial additional insight. We use this embedding to reinterpret the differences between the NJ and BIONJ tree building algorithms, providing one illustration of how this embedding reflects tree structures in data.
引用
收藏
页码:99 / 111
页数:12
相关论文
共 50 条
  • [21] Embeddings of Twin Trees
    Michael Abramson
    Curtis D. Bennett
    Geometriae Dedicata, 1999, 75 : 209 - 215
  • [22] EMBEDDINGS OF SURFACES IN EUCLIDEAN 3 SPACE
    BURGESS, CE
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 81 (05) : 795 - 818
  • [23] Euclidean Embeddings and Riemannian Bergman Metrics
    Eric Potash
    The Journal of Geometric Analysis, 2016, 26 : 499 - 528
  • [24] Sparsity and non-Euclidean embeddings
    Omer Friedland
    Olivier Guédon
    Israel Journal of Mathematics, 2013, 197 : 329 - 345
  • [25] Embeddings of twin trees
    Abramson, M
    Bennett, CD
    GEOMETRIAE DEDICATA, 1999, 75 (02) : 209 - 215
  • [26] Lattice embeddings of trees
    Imrich, Wilfried
    Kovse, Matjaz
    EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (05) : 1142 - 1148
  • [27] DECOMPOSITIONS AND EMBEDDINGS OF TREES
    BAUMGART.JE
    JOURNAL OF SYMBOLIC LOGIC, 1971, 36 (02) : 374 - &
  • [28] Euclidean Embeddings and Riemannian Bergman Metrics
    Potash, Eric
    JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (01) : 499 - 528
  • [29] RECONSTRUCTION OF EUCLIDEAN EMBEDDINGS IN DENSE NETWORKS
    Costrell, Sarah
    Bhattacharya, Subhrajit
    Ghrist, Robert
    2016 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2016, : 400 - 404
  • [30] Euclidean embeddings of finite metric spaces
    Maehara, Hiroshi
    DISCRETE MATHEMATICS, 2013, 313 (23) : 2848 - 2856