Dielectric Ceramic EPR Resonators for Low Temperature Spectroscopy at X-band Frequencies

被引:0
|
作者
Stefan Friedländer
Oleg Ovchar
Horst Voigt
Rolf Böttcher
Anatolii Belous
Andreas Pöppl
机构
[1] Institute of Experimental Physics II,
[2] Leipzig University,undefined
[3] Institute of General and Inorganic Chemistry,undefined
[4] NASU,undefined
来源
关键词
Electron Paramagnetic Resonance; Electron Paramagnetic Resonance Spectrum; Electron Paramagnetic Resonance Signal; Cavity Resonator; Couple Mode Theory;
D O I
暂无
中图分类号
学科分类号
摘要
The performance of new dielectric ceramic resonators (DRs) for continuous wave (cw) X-band electron paramagnetic resonance (EPR) spectroscopy is investigated at room temperature and low temperatures (77, 6 K). The DRs with high dielectric constants of about εr=80\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon _r = 80$$\end{document}, featuring low residual paramagnetic impurities, have been developed and produced on the basis of barium lanthanide titanates solid solutions with the general formula Ba6-x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{6-x}$$\end{document}Ln8+2x/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{8+2x/3}$$\end{document}Ti18\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{18}$$\end{document}O54\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{54}$$\end{document} (Ln = Sm, Nd) that demonstrate at once low dielectric losses in the microwave range (tanδ=7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tan \delta = 7$$\end{document}–14 × 10−4 at 10 GHz) and appropriate temperature stability of the dielectric constant (τε=±\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _\varepsilon = \pm$$\end{document}5 ppm/K). They were optimized for samples with small dimensions and can be used in commercial Oxford instruments flow cryostats if the coupling is done via cavity resonators. We found a maximal EPR signal enhancement by a factor up to 74 at 6 K. The increases of quality and filling factors as well as that of the microwave (mw) B1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_1$$\end{document}-field in the resonator setup are discussed in dependence on temperature. We show that the absolute sensitivity gain must be related to that increase in the mw field and the remaining relative gain of the SNR is about 18 for small samples. The developed DRs have shown a good potential in EPR application as reliable and easy-to-use components allowing research of thin films and in particular small crystalline structures.
引用
收藏
页码:33 / 48
页数:15
相关论文
共 50 条
  • [31] Estimation of the Complex Permittivity of a Bi-layer Dielectric Material in X-Band Frequencies
    Ait Benali, Lahcen
    Tribak, Abdelwahed
    Terhzaz, Jaouad
    Mediavilla, Angel
    ICCWCS'17: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON COMPUTING AND WIRELESS COMMUNICATION SYSTEMS, 2017,
  • [32] PERMITTIVITY TENSOR OF GYPSIUM AT X-BAND FREQUENCIES
    SERVANT, R
    ANNALES DE PHYSIQUE, 1963, 8 (9-1) : 525 - &
  • [33] Hybrid Concentric Annular Cylindrical Dielectric Resonators Antenna for Improved X-Band and Ku-Band Applications
    Pradhan, Namrata
    Pradhan, Hrudananda
    2017 2ND IEEE INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, SIGNAL PROCESSING AND NETWORKING (WISPNET), 2017, : 1550 - 1554
  • [34] Original low-dimensional X-band dielectric disk antenna
    Khruslov, Maksym M.
    Ivanchenko, Igor V.
    Popenko, Nina A.
    MELECON 2010: THE 15TH IEEE MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, 2010, : 1165 - 1169
  • [35] UNIAXIAL STRESS APPARATUS FOR AN EPR X-BAND SPECTROMETER
    SZUMOWSKI, J
    FALKOWSKI, K
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1976, 47 (02): : 252 - 253
  • [36] An X-Band Crossed-Loop EPR Resonator
    George A. Rinard
    Richard W. Quine
    Joseph McPeak
    Laura Buchanan
    Sandra S. Eaton
    Gareth R. Eaton
    Applied Magnetic Resonance, 2017, 48 : 1219 - 1226
  • [37] An X-Band Crossed-Loop EPR Resonator
    Rinard, George A.
    Quine, Richard W.
    McPeak, Joseph
    Buchanan, Laura
    Eaton, Sandra S.
    Eaton, Gareth R.
    APPLIED MAGNETIC RESONANCE, 2017, 48 (11-12) : 1219 - 1226
  • [38] X-band EPR Spectroscopic Investigation of Seborrheic Keratosis
    Nakagawa, Kouichi
    Minakawa, Satoko
    Sawamura, Daisuke
    ANALYTICAL SCIENCES, 2019, 35 (09) : 1027 - 1030
  • [39] X-band EPR Spectroscopic Investigation of Seborrheic Keratosis
    Kouichi Nakagawa
    Satoko Minakawa
    Daisuke Sawamura
    Analytical Sciences, 2019, 35 : 1027 - 1030
  • [40] MEASUREMENTS ON X-BAND FIN-LINE RESONATORS
    AGRAWAL, AK
    INTERNATIONAL JOURNAL OF ELECTRONICS, 1985, 58 (05) : 807 - 815