GPU Framework for Change Detection in Multitemporal Hyperspectral Images

被引:0
|
作者
Javier López-Fandiño
Dora B. Heras
Francisco Argüello
Mauro Dalla Mura
机构
[1] Universidade de Santiago de Compostela,Centro Singular de Investigación en Tecnoloxías da Información (CiTIUS)
[2] Institute of Engineering,GIPSA
[3] CNRS,lab
[4] Grenoble INP,undefined
[5] Université Grenoble Alpes,undefined
关键词
Hyperspectral change detection; Segmentation; Spectral Angle Mapper; Change Vector Analysis; GPU; CUDA;
D O I
暂无
中图分类号
学科分类号
摘要
Nowadays, it is increasingly common to detect land cover changes using remote sensing multispectral images captured at different time-frames over the same area. A large part of the available change detection (CD) methods focus on pixel-based operations. The use of spectral–spatial techniques helps to improve the accuracy results but also implies a significant increase in processing time. In this paper, a Graphic Processor Unit (GPU) framework to perform object-based CD in multitemporal remote sensing hyperspectral data is presented. It is based on Change Vector Analysis with the Spectral Angle Mapper distance and Otsu’s thresholding. Spatial information is taken into account by considering watershed segmentation. The GPU implementation achieves real-time execution and speedups of up to 46.5×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} with respect to an OpenMP implementation.
引用
收藏
页码:272 / 292
页数:20
相关论文
共 50 条
  • [41] Informative Change Detection by Unmixing for Hyperspectral Images
    Erturk, Alp
    Plaza, Antonio
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (06) : 1252 - 1256
  • [42] CHANGE DETECTION WITH MANIFOLD EMBEDDING FOR HYPERSPECTRAL IMAGES
    Erturk, Alp
    Taskin, Gulsen
    [J]. 2021 11TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2021,
  • [43] Hybrid Change Detection Approach in Hyperspectral Images
    Karaca, Ali Can
    Cesmeci, Davut
    Erturk, Alp
    Erturk, Sarp
    [J]. 2015 23RD SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2015, : 2226 - 2229
  • [44] Multitemporal Hyperspectral Image Change Detection by Joint Affinity and Convolutional Neural Networks
    Chen, Zhao
    Zhou, Feng
    [J]. 2019 10TH INTERNATIONAL WORKSHOP ON THE ANALYSIS OF MULTITEMPORAL REMOTE SENSING IMAGES (MULTITEMP), 2019,
  • [45] A Spectral-Spatial Change Detection Method Based on Simplified 3-D Convolutional Autoencoder for Multitemporal Hyperspectral Images
    Zhao, Chunhui
    Cheng, Hao
    Feng, Shou
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [46] Spectrally-Spatially Regularized Low-Rank and Sparse Decomposition: A Novel Method for Change Detection in Multitemporal Hyperspectral Images
    Chen, Zhao
    Wang, Bin
    [J]. REMOTE SENSING, 2017, 9 (10)
  • [47] Interactive Change Detection Techniques in Multitemporal Multispectral Remote Sensing Images
    Alhichri, Haikel
    Bazi, Yakoub
    Alajlan, Naif
    Ahamad, Sayed M.
    [J]. 2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 6173 - 6176
  • [48] Statistical Similarity Based Change Detection for Multitemporal Remote Sensing Images
    Aktar M.
    Mamun M.A.
    Hossain M.A.
    [J]. Aktar, Mumu (mumu.ruet@gmail.com), 2017, Hindawi Limited, 410 Park Avenue, 15th Floor, 287 pmb, New York, NY 10022, United States (2017)
  • [49] Wavelet Spatio-Temporal Change Detection on Multitemporal SAR Images
    Fonseca, Rodney V.
    Negri, Rogerio G.
    Pinheiro, Aluisio
    Atto, Abdourrahmane Mahamane
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 4013 - 4023
  • [50] Building Change Detection in Multitemporal Very High Resolution SAR Images
    Marin, Carlo
    Bovolo, Francesca
    Bruzzone, Lorenzo
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (05): : 2664 - 2682