CHANGE DETECTION WITH MANIFOLD EMBEDDING FOR HYPERSPECTRAL IMAGES

被引:1
|
作者
Erturk, Alp [1 ,2 ]
Taskin, Gulsen [1 ,2 ]
机构
[1] Kocaeli Univ, Izmit, Turkey
[2] Istanbul Tech Univ, Istanbul, Turkey
关键词
Change detection; hyperspectral; Laplacian Eigenmaps; manifold;
D O I
10.1109/WHISPERS52202.2021.9484043
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a manifold based approach for change detection in multitemporal hyperspectral images. Manifold representation, using Laplacian Eigenmaps, is applied for dimensionality reduction on stacked temporal datasets and change detection on the reduced datasets. The resulting latent vectors are utilized to cluster the changed vs. unchanged regions. A semi-supervised scheme is also proposed which circumvents the challenging thresholding issue and enables satisfactory binary change detection outputs. The proposed approach is validated on two real bitemporal hyperspectral datasets.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Exploiting Embedding Manifold of Autoencoders for Hyperspectral Anomaly Detection
    Lu, Xiaoqiang
    Zhang, Wuxia
    Huang, Ju
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (03): : 1527 - 1537
  • [2] Sparse Transfer Manifold Embedding for Hyperspectral Target Detection
    Zhang, Lefei
    Zhang, Liangpei
    Tao, Dacheng
    Huang, Xin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (02): : 1030 - 1043
  • [3] Dimensionality reduction of hyperspectral images based on sparse discriminant manifold embedding
    Huang, Hong
    Luo, Fulin
    Liu, Jiamin
    Yang, Yaqiong
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2015, 106 : 42 - 54
  • [4] Advance in Hyperspectral Images Change Detection
    Song Ruo-xi
    Feng Yi-ning
    Cheng Wei
    Wang Xiang-hai
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43 (08) : 2354 - 2362
  • [5] An adaptive locally linear embedding manifold learning approach for hyperspectral target detection
    Ziemann, Amanda K.
    Messinger, David W.
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XXI, 2015, 9472
  • [6] Collaborative Discriminative Manifold Embedding for Hyperspectral Imagery
    Lv, Meng
    Hou, Qiuling
    Deng, Naiyang
    Jing, Ling
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (04) : 569 - 573
  • [7] Deep Manifold Embedding for Hyperspectral Image Classification
    Gong, Zhiqiang
    Hu, Weidong
    Du, Xiaoyong
    Zhong, Ping
    Hu, Panhe
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (10) : 10430 - 10443
  • [8] Informative Change Detection by Unmixing for Hyperspectral Images
    Erturk, Alp
    Plaza, Antonio
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (06) : 1252 - 1256
  • [9] Hybrid Change Detection Approach in Hyperspectral Images
    Karaca, Ali Can
    Cesmeci, Davut
    Erturk, Alp
    Erturk, Sarp
    2015 23RD SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2015, : 2226 - 2229
  • [10] Dimensionality Reduction of Hyperspectral Images Based on Improved Spatial-Spectral Weight Manifold Embedding
    Liu, Hong
    Xia, Kewen
    Li, Tiejun
    Ma, Jie
    Owoola, Eunice
    SENSORS, 2020, 20 (16) : 1 - 25