Slanted vector fields for jet spaces

被引:0
|
作者
Lionel Darondeau
机构
[1] Université Paris-Sud,Laboratoire de Mathématiques d’Orsay
来源
Mathematische Zeitschrift | 2016年 / 282卷
关键词
Slanted vector fields; Geometric jet coordinates; Logarithmic jets; Variational method of Voisin–Siu; Hyperbolicity; Building-block vector fields; 32Q45; 14J70; 15A03;
D O I
暂无
中图分类号
学科分类号
摘要
Low pole order frames of slanted vector fields are constructed on the space of vertical k-jets of the universal family of complete intersections in Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {P} ^n$$\end{document} and, adapting the arguments, low pole order frames of slanted vector fields are also constructed on the space of vertical logarithmic k-jets along the universal family of projective hypersurfaces in Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {P} ^n$$\end{document} with several irreducible smooth components. Both the pole order (here =5k-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$=5k-2$$\end{document}) and the determination of the locus where the global generation statement fails are improved compared to the literature (previously =k2+2k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$=k^{2}+2k$$\end{document}), thanks to three new ingredients: we reformulate the problem in terms of some adjoint action, we introduce a new formalism of geometric jet coordinates, and then we construct what we call building-block vector fields, making the problem for arbitrary jet order k⩾1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\geqslant 1$$\end{document} into a very analog of the much easier case where k=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=0$$\end{document}, i.e. where no jet coordinates are needed.
引用
收藏
页码:547 / 575
页数:28
相关论文
共 50 条
  • [21] SOBOLEV SPACES OF SOLENOIDAL VECTOR-FIELDS
    MASLENNIKOVA, VN
    BOGOVSKII, ME
    SIBERIAN MATHEMATICAL JOURNAL, 1981, 22 (03) : 399 - 420
  • [22] Construction of bases in spaces of solenoidal vector fields
    Ladyzhenskaya O.A.
    Journal of Mathematical Sciences, 2005, 130 (4) : 4827 - 4835
  • [23] Harmonic radial vector fields on harmonic spaces
    Gilkey, P. B.
    Park, J. H.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 504 (02)
  • [24] Geodesic Mappings of Spaces with φ(Ric) Vector Fields
    Vashpanov, Y.
    Olshevska, O.
    Lesechko, O.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES (AMITANS 2020), 2020, 2302
  • [25] Regular vector-fields in Banach spaces
    Reich, Simeon
    Zaslavski, Alexander J.
    TAIWANESE JOURNAL OF MATHEMATICS, 2008, 12 (05): : 1165 - 1176
  • [26] Conformal vector fields of a class of Finsler spaces
    Yang, Guojun
    PERIODICA MATHEMATICA HUNGARICA, 2024, 89 (02) : 419 - 433
  • [27] Averages in vector spaces over finite fields
    Carbery, Anthony
    Stones, Brendan
    Wright, James
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2008, 144 : 13 - 27
  • [28] Jet spaces of varieties over differential and difference fields
    Anand Pillay
    Martin Ziegler
    Selecta Mathematica, 2003, 9 (4) : 579 - 599
  • [29] Deformation algebras on jet prolongations of projectable vector fields
    Cristea, Valentin Gabriel
    BSG PROCEEDINGS 19, 2012, 19 : 32 - 35
  • [30] The geometry of closed conformal vector fields on Riemannian spaces
    Caminha, A.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2011, 42 (02): : 277 - 300