Infinitely many solutions for a class of fractional Schrödinger equations with sign-changing weight functions

被引:0
|
作者
Yongpeng Chen
Baoxia Jin
机构
[1] Guangxi University of Science and Technology,School of Science
[2] Liuzhou Institute of Technology,Department of Mathematics and Science
来源
关键词
Fractional Schrödinger equation; Sign-changing weight functions; Nehari manifold; 35J20; 35J70; 58E05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the fractional Schrödinger equation {(−Δ)su+u=a(x)|u|p−2u+b(x)|u|q−2u,u∈Hs(RN),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textstyle\begin{cases} (-\Delta )^{s}u+u=a(x) \vert u \vert ^{p-2}u+b(x) \vert u \vert ^{q-2}u, \\ u\in H^{s}(\mathbb{R}^{N}), \end{cases} $$\end{document} where (−Δ)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(-\Delta )^{s}$\end{document} denotes the fractional Laplacian of order s∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$s\in (0,1)$\end{document}, N>2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N>2s$\end{document}, 2<p<q<2s∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2< p< q<2^{*}_{s}$\end{document}, and 2s∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2^{*}_{s}$\end{document} is the fractional critical Sobolev exponent. The weight potentials a or b is a sign-changing function and satisfies some valid assumptions. We obtain the existence of infinitely many solutions to the problem by the Nehari manifold.
引用
收藏
相关论文
共 50 条
  • [41] Infinitely many weak solutions for a fractional Schrödinger equation
    Wei Dong
    Jiafa Xu
    Zhongli Wei
    Boundary Value Problems, 2014
  • [42] Positive and Sign-changing Solutions for Critical Schrödinger–Poisson Systems with Sign-changing Potential
    Xiao-Ping Chen
    Chun-Lei Tang
    Qualitative Theory of Dynamical Systems, 2022, 21
  • [43] Infinitely many sign-changing solutions for a nonlocal problem
    Guangze Gu
    Wei Zhang
    Fukun Zhao
    Annali di Matematica Pura ed Applicata (1923 -), 2018, 197 : 1429 - 1444
  • [44] Infinitely many solutions for Kirchhoff equations with sign-changing potential and Hartree nonlinearity
    Che, Guofeng
    Chen, Haibo
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (03)
  • [45] INFINITELY MANY SOLUTIONS FOR GENERALIZED QUASILINEAR SCHRODINGER EQUATIONS WITH SIGN-CHANGING POTENTIAL
    Shi, Hongxia
    Chen, Haibo
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (01) : 53 - 66
  • [46] Infinitely many high energy solutions for fractional Schrödinger equations with magnetic field
    Libo Yang
    Tianqing An
    Jiabin Zuo
    Boundary Value Problems, 2019
  • [47] INFINITELY MANY SOLUTIONS FOR A NONLOCAL TYPE PROBLEM WITH SIGN-CHANGING WEIGHT FUNCTION
    Azroul, Elhoussine
    Benkirane, Abdelmoujib
    Srati, Mohammed
    Torres, Cesar
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2021,
  • [48] INFINITELY MANY SOLUTIONS FOR SUBLINEAR KIRCHHOFF EQUATIONS IN RN WITH SIGN-CHANGING POTENTIALS
    Bahrouni, Anouar
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [49] INFINITELY MANY SOLUTIONS FOR SEMILINEAR Δλ-LAPLACE EQUATIONS WITH SIGN-CHANGING POTENTIAL AND NONLINEARITY
    Chen, Jianhua
    Tang, Xianhua
    Gao, Zu
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2017, 54 (04) : 536 - 549
  • [50] Infinitely many sign-changing solutions for planar Schrodinger-Newton equations
    Wang, Wenbo
    Li, Quanqing
    Yu, Yuanyang
    Li, Yongkun
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2021, 52 (01): : 149 - 161