Infinitely many solutions for a class of fractional Schrödinger equations with sign-changing weight functions

被引:0
|
作者
Yongpeng Chen
Baoxia Jin
机构
[1] Guangxi University of Science and Technology,School of Science
[2] Liuzhou Institute of Technology,Department of Mathematics and Science
来源
关键词
Fractional Schrödinger equation; Sign-changing weight functions; Nehari manifold; 35J20; 35J70; 58E05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the fractional Schrödinger equation {(−Δ)su+u=a(x)|u|p−2u+b(x)|u|q−2u,u∈Hs(RN),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textstyle\begin{cases} (-\Delta )^{s}u+u=a(x) \vert u \vert ^{p-2}u+b(x) \vert u \vert ^{q-2}u, \\ u\in H^{s}(\mathbb{R}^{N}), \end{cases} $$\end{document} where (−Δ)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(-\Delta )^{s}$\end{document} denotes the fractional Laplacian of order s∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$s\in (0,1)$\end{document}, N>2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N>2s$\end{document}, 2<p<q<2s∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2< p< q<2^{*}_{s}$\end{document}, and 2s∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2^{*}_{s}$\end{document} is the fractional critical Sobolev exponent. The weight potentials a or b is a sign-changing function and satisfies some valid assumptions. We obtain the existence of infinitely many solutions to the problem by the Nehari manifold.
引用
收藏
相关论文
共 50 条
  • [21] Infinitely many sign-changing solutions of a critical fractional equation
    Emerson Abreu
    Ezequiel Barbosa
    Joel Cruz Ramirez
    Annali di Matematica Pura ed Applicata (1923 -), 2022, 201 : 861 - 901
  • [22] Infinitely many sign-changing solutions of a critical fractional equation
    Abreu, Emerson
    Barbosa, Ezequiel
    Ramirez, Joel Cruz
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (02) : 861 - 901
  • [23] INFINITELY MANY POSITIVE AND SIGN-CHANGING SOLUTIONS FOR NONLINEAR FRACTIONAL SCALAR FIELD EQUATIONS
    Long, Wei
    Peng, Shuangjie
    Yang, Jing
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (02) : 917 - 939
  • [24] Entire Sign-Changing Solutions to the Fractional Critical Schr?dinger Equation
    Xingdong Tang
    Guixiang Xu
    Chunyan Zhang
    Jihui Zhang
    Annals of Applied Mathematics, 2024, 40 (03) : 219 - 248
  • [25] Infinitely many sign-changing solutions for Kirchhoff type equations
    Huang, Wentao
    Wang, Li
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2020, 65 (06) : 920 - 935
  • [26] Infinitely many solutions for a class of fractional Kirchhoff-Schrödinger-Poisson equations
    Selmi, Zeineb
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2025,
  • [27] On nontrivial solutions of nonlinear Schrödinger equations with sign-changing potential
    Wei Chen
    Yue Wu
    Seongtae Jhang
    Advances in Difference Equations, 2021
  • [28] Radial sign-changing solutions to biharmonic nonlinear Schrödinger equations
    Marcos TO Pimenta
    Boundary Value Problems, 2015
  • [29] INFINITELY MANY SOLUTIONS FOR A BI-NONLOCAL EQUATION WITH SIGN-CHANGING WEIGHT FUNCTIONS
    Jalilian, Y.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2016, 42 (03): : 611 - 626
  • [30] Multiple solutions for a class of infinitely degenerate elliptic equations with a sign-changing weight function
    Tian, Shuying
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (18) : 6987 - 6998