Infinitely many solutions for a class of fractional Schrödinger equations with sign-changing weight functions

被引:0
|
作者
Yongpeng Chen
Baoxia Jin
机构
[1] Guangxi University of Science and Technology,School of Science
[2] Liuzhou Institute of Technology,Department of Mathematics and Science
来源
关键词
Fractional Schrödinger equation; Sign-changing weight functions; Nehari manifold; 35J20; 35J70; 58E05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the fractional Schrödinger equation {(−Δ)su+u=a(x)|u|p−2u+b(x)|u|q−2u,u∈Hs(RN),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textstyle\begin{cases} (-\Delta )^{s}u+u=a(x) \vert u \vert ^{p-2}u+b(x) \vert u \vert ^{q-2}u, \\ u\in H^{s}(\mathbb{R}^{N}), \end{cases} $$\end{document} where (−Δ)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(-\Delta )^{s}$\end{document} denotes the fractional Laplacian of order s∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$s\in (0,1)$\end{document}, N>2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N>2s$\end{document}, 2<p<q<2s∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2< p< q<2^{*}_{s}$\end{document}, and 2s∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2^{*}_{s}$\end{document} is the fractional critical Sobolev exponent. The weight potentials a or b is a sign-changing function and satisfies some valid assumptions. We obtain the existence of infinitely many solutions to the problem by the Nehari manifold.
引用
收藏
相关论文
共 50 条