On Polynomials over a Finite Field of Even Characteristic with Maximum Absolute Value of the Trigonometric Sum

被引:0
|
作者
L. A. Bassalygo
V. A. Zinov'ev
机构
[1] Russian Academy of Sciences,Institute for Problems in Information Transmission
来源
Mathematical Notes | 2002年 / 72卷
关键词
trigonometric sum; Weil estimate; polynomial; field of even characteristic;
D O I
暂无
中图分类号
学科分类号
摘要
We study trigonometric sums in finite fields \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$F_Q $$ \end{document}. The Weil estimate of such sums is well known: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$|S(f)| \leqslant ({\text{deg }}f - 1)\sqrt Q $$ \end{document}, where f is a polynomial with coefficients from F(Q). We construct two classes of polynomials f, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(Q,2) = 2$$ \end{document}, for which \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$|S(f)|$$ \end{document} attains the largest possible value and, in particular, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$|S(f)| = ({\text{deg }}f - 1)\sqrt Q $$ \end{document}.
引用
收藏
页码:152 / 157
页数:5
相关论文
共 50 条
  • [31] APPROXIMATION OF THE DISCRETE LOGARITHM IN FINITE FIELDS OF EVEN CHARACTERISTIC BY REAL POLYNOMIALS
    Brandstatter, Nina
    Winterhof, Arne
    ARCHIVUM MATHEMATICUM, 2006, 42 (01): : 43 - 50
  • [32] On polynomials of special form over a finite field of odd characteristic attaining the Weil bound
    Bassalygo, LA
    Zinov'ev, VA
    MATHEMATICAL NOTES, 2005, 78 (1-2) : 14 - 22
  • [33] On Polynomials of Special Form over a Finite Field of Odd Characteristic Attaining the Weil Bound
    L. A. Bassalygo
    V. A. Zinov’ev
    Mathematical Notes, 2005, 78 : 14 - 22
  • [34] PERMUTATION TRINOMIALS OVER FINITE FIELDS WITH EVEN CHARACTERISTIC
    Ding, Cunsheng
    Qu, Longjiang
    Wang, Qiang
    Yuan, Jin
    Yuan, Pingzhi
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (01) : 79 - 92
  • [35] Binomial permutations over finite fields with even characteristic
    Tu, Ziran
    Zeng, Xiangyong
    Jiang, Yupeng
    Li, Yan
    DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (12) : 2869 - 2888
  • [36] Binomial permutations over finite fields with even characteristic
    Ziran Tu
    Xiangyong Zeng
    Yupeng Jiang
    Yan Li
    Designs, Codes and Cryptography, 2021, 89 : 2869 - 2888
  • [37] On additive polynomials over a finite field
    Odoni, RWK
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1999, 42 : 1 - 16
  • [38] Random polynomials over a finite field
    Ivchenko, G. I.
    Medvedev, Yu. I.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2008, 18 (01): : 1 - 23
  • [39] Random polynomials over a finite field
    Ivchenko, GI
    Medvedev, YI
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1997, 41 (01) : 164 - 169
  • [40] Multiaffine polynomials over a finite field
    Selezneva, Svetlana N.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2021, 31 (06): : 421 - 430