Efficient Quantum Algorithms of Finding the Roots of a Polynomial Function

被引:0
|
作者
Koji Nagata
Tadao Nakamura
Han Geurdes
Josep Batle
Ahmed Farouk
Do Ngoc Diep
Santanu Kumar Patro
机构
[1] Korea Advanced Institute of Science and Technology,Department of Physics
[2] Keio University,Department of Information and Computer Science
[3] Geurdes Datascience,Departament de Física
[4] Universitat de les Illes Balears,Department of Physics and Computer Science, Faculty of Science
[5] Wilfrid Laurier University,TIMAS
[6] Thang Long University,Institute of Mathematics
[7] VAST,Department of Mathematics
[8] Berhampur University,undefined
关键词
Quantum computation; Quantum algorithms;
D O I
暂无
中图分类号
学科分类号
摘要
Two quantum algorithms of finding the roots of a polynomial function f(x) = xm + am− 1xm− 1 + ... + a1x + a0 are discussed by using the Bernstein-Vazirani algorithm. One algorithm is presented in the modulo 2. The other algorithm is presented in the modulo d. Here all the roots are in the integers Z. The speed of solving the problem is shown to outperform the best classical case by a factor of m in both cases.
引用
收藏
页码:2546 / 2555
页数:9
相关论文
共 50 条
  • [21] A Parallel Algorithm for Finding Roots of a Complex Polynomial
    程锦松
    Journal of Computer Science and Technology, 1990, (01) : 71 - 81
  • [22] FINDING ROOTS BY DEFLATED POLYNOMIAL-APPROXIMATION
    LUCAS, TN
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1990, 327 (05): : 819 - 830
  • [23] Finding roots of a multivariate polynomial in a linear subspace
    Huang, Ming-Deh A.
    FINITE FIELDS AND THEIR APPLICATIONS, 2018, 54 : 288 - 296
  • [24] Parameterized Algorithms for Finding Square Roots
    Manfred Cochefert
    Jean-François Couturier
    Petr A. Golovach
    Dieter Kratsch
    Daniël Paulusma
    Algorithmica, 2016, 74 : 602 - 629
  • [25] Parameterized Algorithms for Finding Square Roots
    Cochefert, Manfred
    Couturier, Jean-Francois
    Golovach, Petr A.
    Kratsch, Dieter
    Paulusma, Daniel
    ALGORITHMICA, 2016, 74 (02) : 602 - 629
  • [26] ALGORITHMS FOR FINDING REAL ROOTS OF POLYNOMIALS
    BUENO, F
    ORTEGA, B
    ROTHSTEIN, M
    ACTA CIENTIFICA VENEZOLANA, 1978, 29 : 33 - 33
  • [27] Quantum Algorithms for the Jones Polynomial
    Kauffman, Louis H.
    Lomonaco, Samuel J., Jr.
    QUANTUM INFORMATION AND COMPUTATION VIII, 2010, 7702
  • [28] ASYNCHRONOUS POLYNOMIAL ZERO-FINDING ALGORITHMS
    FREEMAN, TL
    BANE, MK
    PARALLEL COMPUTING, 1991, 17 (6-7) : 673 - 681
  • [29] Algorithms for quaternion polynomial root-finding
    Kalantari, Bahman
    JOURNAL OF COMPLEXITY, 2013, 29 (3-4) : 302 - 322
  • [30] A GLOBALLY CONVERGENT METHOD FOR SIMULTANEOUSLY FINDING POLYNOMIAL ROOTS
    PASQUINI, L
    TRIGIANTE, D
    MATHEMATICS OF COMPUTATION, 1985, 44 (169) : 135 - 149