Parameterized Algorithms for Finding Square Roots

被引:0
|
作者
Manfred Cochefert
Jean-François Couturier
Petr A. Golovach
Dieter Kratsch
Daniël Paulusma
机构
[1] Université de Lorraine,Laboratoire d’Informatique Théorique et Appliquée
[2] Université de Reims Champagne-Ardenne,CReSTIC
[3] University of Bergen,Department of Informatics
[4] Durham University,Science Laboratories, School of Engineering and Computing Sciences
来源
Algorithmica | 2016年 / 74卷
关键词
Parameterized complexity; Graph square root; Generalized kernel;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the following two problems are fixed-parameter tractable with parameter k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}: testing whether a connected n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-vertex graph with m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document} edges has a square root with at most n-1+k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-1+k$$\end{document} edges and testing whether such a graph has a square root with at least m-k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m-k$$\end{document} edges. Our first result implies that squares of graphs obtained from trees by adding at most k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} edges can be recognized in polynomial time for every fixed k≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 0$$\end{document}; previously this result was known only for k=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=0$$\end{document}. Our second result is equivalent to stating that deciding whether a graph can be modified into a square root of itself by at most k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} edge deletions is fixed-parameter tractable with parameter k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}.
引用
收藏
页码:602 / 629
页数:27
相关论文
共 50 条
  • [1] Parameterized Algorithms for Finding Square Roots
    Cochefert, Manfred
    Couturier, Jean-Francois
    Golovach, Petr A.
    Kratsch, Dieter
    Paulusma, Daniel
    ALGORITHMICA, 2016, 74 (02) : 602 - 629
  • [2] ALGORITHMS FOR SQUARE ROOTS OF GRAPHS
    LIN, YL
    SKIENA, SS
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1995, 8 (01) : 99 - 118
  • [3] Parameterized algorithms for finding highly connected solution
    Abhinav, Ankit
    Bandopadhyay, Susobhan
    Banik, Aritra
    Saurabh, Saket
    THEORETICAL COMPUTER SCIENCE, 2023, 942 : 47 - 56
  • [4] Parameterized Algorithms for Finding a Collective Set of Items
    Bredereck, Robert
    Faliszewski, Piotr
    Kaczmarczy, Andrzej
    Knop, Dusan
    Niedermeier, Roif
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 1838 - 1845
  • [5] UNRESTRICTED ALGORITHMS FOR RECIPROCALS AND SQUARE ROOTS
    CLENSHAW, CW
    OLVER, FWJ
    BIT, 1986, 26 (04): : 476 - 492
  • [6] Parameterized and approximation algorithms for finding two disjoint matchings
    Chen, Zhi-Zhong
    Fan, Ying
    Wang, Lusheng
    THEORETICAL COMPUTER SCIENCE, 2014, 556 : 85 - 93
  • [7] ALGORITHMS FOR FINDING REAL ROOTS OF POLYNOMIALS
    BUENO, F
    ORTEGA, B
    ROTHSTEIN, M
    ACTA CIENTIFICA VENEZOLANA, 1978, 29 : 33 - 33
  • [8] Discussion of a method for finding numerical square roots
    Bouton, CL
    ANNALS OF MATHEMATICS, 1908, 10 : 167 - 172
  • [9] ON 2 SEQUENCES OF ALGORITHMS FOR APPROXIMATING SQUARE ROOTS
    YEYIOS, AK
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1992, 40 (01) : 63 - 72
  • [10] ALGORITHMS FOR SQUARE ROOTS OF GRAPHS - (EXTENDED ABSTRACT)
    LIN, YL
    SKIENA, SS
    LECTURE NOTES IN COMPUTER SCIENCE, 1991, 557 : 12 - 21